A Posteriori Correctionsto Classification M ethods.

Witodzistaw Duch and tukasz Itert

Department of Informatics, Nicholas Copernicus University,
Grudzigdzka 5, 87-100 Torfy Poland; http://www.phys.uni.torun.pl/kmk

Abstract. A posteriori corrections are computational inexpensive and may improve accu-
racy, confidence, sensitivity or specificity of the model, or correct for the differences between
a priori training and real (test) class distributions. Such corrections are applicable to neural
and any other classification models.

1 Introduction

Training neural networks and other classification models may be time consuming,
therefore one should try to derive as much information from the final model as
possible. In pathological cases neural and other classifiers may lead to results that
are below the base rates, i.e. below the values obtained by majority classifier. This
may happen especially in case of strong imbalance between the number of samples
from different classes. Another problem arises when the data available for training
has different priori probabilities than the test data. This problem arises frequently

in biostatistics and medical statistics where controlled experiments do not reflect the
true class distributions, in use of stratified cross-validation for training (see [2] for
more examples). The overall accuracy may be not so important as the sensitivity,
specificity or the confidence in the results that should be increased.

A posteriori procedures may frequently correct such problems. Correction in-
creasing overall accuracy, accounting for differences in class distribution and in-
creasing the desired aspects of the classification process are presented in subsequent
sections.

2 Correctionsincreasing overall accuracy

Most classifiers, neural networks included, do not estimated rigorously probabilities.
However, normalizing the classifier’s outputs in such a way that they sum to unity
some estimate of probabilitiggCi|X) that a vectoiX belongs to the class;,i =

1..K, is obtained. Suppose that the majority of samples belong to the lastGydass
IntroducingK — 1 linear scaling parameters:

K-1
P(GiX) =kip(Gi|X),i=1...K—=1; P(Ck|X)=1— Z PGIX) (1)

it is easy to assure that even a very bad classifier will perform at least at the level of
the majority classifier. This is achieved whengli= 0. If all k; = 1 then nothing will

change. If the coefficients; € [0, 1] normalization is preserved, but the probability
of the majority class may only grow. In some situations it may be of advantage
to decrease this probability. For that reason assumetr@f0, +o],i=1... K -1,
andkk = 1, and the final probabilities are obtained from the softmax transformation
instead of the linear rescaling:

K
P(Gi[X:) =exp<Kip<ci|X>/exp<z K,-p<<z|><>) Ji=l.K @
=1

If all kj = 1 the softmax transformation “flattens” probabilities while linear
transformation does not change anything. For example, if there are two classes and
p(C1|X) + p(C2|X) = 1, p(Ci|X) € [0,1] the softmax transformed probabilities be-
long toP(C1|X) € [(1+e)71 (14 e™1)~1, or approximately0.27,0.73).

Rescaled probabilities depend on iheoefficients. For the linear transformation
the quadratic cost function may be taken as:

K
E()=3 3 (PGIXiK) - R(X))? 3)

whereP; (X) are true probabilities that vectirbelongs to the class;. In most cases
only the class label is given instead®{X) probabilities, therefor®; (X) = 1 if the
label of the training vectoX is Cj, and 0 otherwise. Most classifiers minimize this
error so there will be little to correct, but there are systems (for example Kohonen
networks, rough set classifiers or decision trees) that do not minimize cost function
directly. Adding such corrections may be regarded as the simplest form of stacking,
i.e. training one classifier on the outputs of another [1].

The error function is quadratic kparameters:

K
E(k)=3 3 (Kip(GilX) - R(X))? @)

If linear rescaling is used and € [0,1],i = 1...K — 1 then due to normalization (1)
the cost function is:

K-1
i=

K-1 2
E(k) = ; ; (Kip(G|X) = R(X))? + ; <1— Z Kip(Gi|X) — PK(X)> (5)
Minimum of this function is obtained from a solution of linear equation:
P.-k=Q; Pij:Z(1+6ij)p(Ci|X)p(Cj|X), i,j=1...K-1; (6)
QFZD(QIX)(H RI(X) = Px(X)) (7)

Note that for the perfect classifier al = 1 since there is nothing to correct.
For the majority classifier alki = 0 because all probabilities excepfCk |X) are

zero and no scaling of other classes will change it. However, if softmax transfor-
mation is used rescaling becomes possible. Starting foitCi|X) = 1 and all
other probabilities equal to zero, minimization of the cost function (4) with soft-
max transformed probabilities (2) leadsR(Ck |X) = Nk /N and all other probabil-
ities P(Ci|X) = (N — Nk)/N(K — 1). These probabilities may further be corrected
by rescaling them and applying the softmax transformation iteratively. For 2-class
problems there is only one scaling parametaherefore it is easy to plot the num-
ber of errors as a function & The number of errors is discontinuous and for more
than two classes a minimum should be found using a global minimization method.
The primate splice-junction gene sequences (DNA) was used in the Statlog
project [3]. It contains a set of 3190 sequences composed of 60 nucleotides. The
task is to distinguish if there is an “introa> exon" or “exon=> intron" boundary
in the string, or neither. 2000 strings are used for training and 1190 for testing. The k
nearest neighbor (kNN) classifer used for this task gave 85.4% on the test data. Op-
timizing k and the distance metric (using crossvalidation on the training data) only a
slight improvement was obtained: with k=11 and Manhattan distance function accu-
racy reached 85.8% on training and 85.7% on the test data. After optimization of the
K parametersq; = 1,0282 k3 = 0,8785 the results improved on the training set to
86.4% and on the test set to 86.9%. Many probabilities of wrongly classified vectors
became close to the threshold of predicting correct class, therefore comparison of
an area under the ROC curves shows even more significant improvement. Similar
improvements of the KNN results were noticed on several other datasets. More tests
should be conducted with other data and classification methods but since calculation
of such corrections does not cost anything they may be worthwhile to implement.

2.1 Changesintheapriori classdistribution

Another type of corrections is useful if the a priori class distribution in the training
data differs from the test data. If both the training and the test data represent the
same process underlying data generation the dengifil€;) in each class should
remain constant, but the a posteriori probabilifg€;|X) may change. According

to the Bayes theorem:

P(X|Ci) = p(Gi|X)p(X)/p(Ci) ©)

An estimate of the a priori probabilitiggC;) should be made on the test data.
This may be done naively by sampling the new data or in a more sophisticated
way using iterative Expectation Maximization algorithm [2]. As usually the classi-
fication model is created on the training data, providing primi&C;) and posteri-
ors pt(Ci|X). Using Bayes theorem for the probabilitips estimated on the train-
ing set and using the assumption that the a posteriori probabilities do not change
p:(X|Ci) = p(X|Ci) we obtain:

P(G[X)p(X)/p(Ci) = p(X|Gi) = pt(Ci|X) pe(X) /P (Ci) 9)
To eliminatep(X) and pt(X) note that thep(Ci|X) probabilities sum to 1 over
all classes. Therefore

P (Gi[X)p(Ci)/m(Ci)
i P (CIX)p(Cy)/m(Cy)
i.e. the new posterior probabilities are simply corrected by the ratio of new priors
p(Ci) to the old priorsp;(Ci) estimated on the training set, and renormalized to
sum to one. A model estimated on the training data set may thus be applied to
new data that has different a priori probabilities. For example, a model trained on
data from controlled clinical experiments (with(disease) usually around 0.5) may
be used in real world situations, when prior probabilities may be different (when
pt(disease) <« 0.5).

Tests on several two-class medical data that were used in the Statlog project
[3] showed that if the training data hagC1)/p(Cz) = 1 (typical for controlled
experiments) and the class distribution is changga(@)/ p(Cz2) = 5 (even higher
difference may be observed in real applications) this correction frequently increases
accuracy by more than 10%.

pP(G[X) = (10)

2.2 Regjection rate, confidence, sensitivity and specificity

Frequently there is a need to improve confidence in the classification model. This
may be done at a cost of rejecting some cases, i.e. assigning them to the “unknown
class. After training neural network or other classifiers outputs from these models
are interpreted as probabilities. Suppose that the confusion nkei@x C;|M) for

the two-class problem is known:

L C, C. G C. C. G
P(G.,CiM) = n Cinit N nyrny | = | Co|P++ P+— P4r|P+ (11)
CoIn—+ n—— nn- C_|pP—+ P—— P—r|P-

with rows corresponding to true classes, columns to predicted classgs;; amn-

puted for a modeM onn=n, +n_ samples. The;; = p(C;,C;|M) quantities are

the training set estimations of joint probabilities of finding true clasand the pre-
dicted clas€j in the results; the model may also reject some cases as unpredictable,
assigning them to the cla€s. Thep. = p(C+) = ny /nare the a priori probabilities

for the two classe)+ = p+4 + p+— + p+r, andp +p_ = 1.

To increase confidence in the decision of the model the errors on the test set
may be decreased at the cost of rejection of some vectors. In neural networks this
is done by defining minimum and maximum thresholds for the activity of output
units. In models estimating probability similar thresholds may be introduced. For
crisp logical rules confidence optimization is also possible if uncertainty of inputs
are taken into account [4]. The following error function may be used for corrections
after training of the model to set these thresholds:

EMY) =Y 3 P(G.GIM)=TrP(G.CW) > -2 (12)
iZ]

It should be minimized over model parametigtsvithout constraints. Several quan-
tities are used to evaluate classification modiélsreated to distinguis@_. class:

Overall accuracA(M) = p1+ (M) + p__(M)

Overall error ratd.(M) = p_ (M) + p+_(M)

Overall rejection rat®&(M) = pyr (M) + p_r(M) =1—-L(M) — AM)
SensitivityS; (M) = p; ;. (M) = p;+(M)/p., or conditional probability of pre-
dicting clas<C. when the vector was indeed from this class.

e SpecificityS_ (M) = p__(M) = p-—(M)/p- (same for clas€_).

Note that the overall accuracy is equal to a combination of sensitivity and speci-
ficity weighted by the a priori probabilities:

AM) = p;S;(M) + p-S_(M) (13)
Thus sensitivity (specificity) plays the role of accuracy of the model fo€théC_)
class only, withp.. (p-) being the fraction of samples from this class (other classes)
in the training set. In th&-class problem one can always use a separate model to
distinguish between a single cla@s and all other class&3 . The cost function for
the modeM,, is (all pij = pij(M4)):

EM+y) =L(My) —AM) =y (p— + p-+) = (P+++Pp-—) (14)
should be minimized over parameters of e model created for th€, class. For
largeyonly the error is important and it may decrease at the expense of the rejection
rate, for example by making the rule intervals more tight or the thresholds for neural
activity closer to 1 and 0. In extreme case no errors will be made on the training set
since the classifier will reject all such cases. ¥er 0 only accuracy is maximized,
leading to less rejections. Using the error (loss) and the rejection rate the formula
(14) becomes:

minE(M;y) < min{(1+y)L(M)+RM)} (15)

Fory = 0 a sum of the overall error and rejection rate is minimized, while for
largey the error term dominates, allowing the rejection rate to grow. In many appli-
cations it is important to achieve highest sensitivity or specificity. The error function
(15) distinguishes only one of these quantities. Introduction of relative costs should
be used instead. If the cost of assigning vectors from true €lag® the predicted
classC, is set to 1, and the cost of making an opposite errar, ihe cost function
is:

min E(M;c) = min{p, (M) +ap_ (M)} (16)
= min {p (1~ S.(M)) ~ pss(M) +a[p_ (1S (M)~ p(M)]} (17)

Fora = 0 this is equivalent to maximization @f, . (M) + p4r(M) and for largex
to maximization ofp__ (M) + p_r(M).

Receiver Operator Characteristic (ROC) curves showSth@alues as a func-
tion of 1— S_, allowing for another way of adjusting the rejection thresholds. The
approach described here allows for optimization with explicit costs; we have used it
to optimize logical rules [4] where all predictions are binary and ROC approach is
not so convenient.

3 Conclusions

Three types of corrections that can be apphgubsteriori, i.e. after the model has
already been trained, has been described in this paper. Some of these corrections
may also be applied during the training process. They are aimed either at:

1) the overall increase of accuracy by scaling the probabilities on the training set
and adding linear or nonlinear (softmax) scaling factors,

2) restoring the balance between the training and the test set if the distributions are
quite different, or

3) improving confidence of classification, selectivity or specificity of results.

The first of these corrections is similar (although simpler) to the effect of adding
an additional linear or non-linear perceptron trained on results obtained from other
models, a procedure known as stacking [1]. Tests with the kNN method on DNA
splice data set and other datasets show that this correction may improve results
with no computational cost. The second correction is useful in real-world situations,
when real distribution of classes in the data does not match the distribution in the
data given for training. Finally the overall accuracy is not always the most important
parameter. Relations between costs, selectivity, specificity and error functions have
been investigated. We found them especially useful for optimization of logical rules.

More empirical tests are needed to evaluate usefulness of these corrections in
practice, but our preliminary results are encouraging.

Acknowledgments: Support by the Polish Committee for Scientific Research, grant
8 T11C 006 19, is gratefully acknowledged.

References

1. Wolpert D.H. (1992) Stacked generalization. Neural Netwsrk11-259

2. Saerens M, Lattinne P, Decaestecker C. (2002) Adjusting the outputs of a classifier to
new a priori probabilities: a simple procedure. Neural Computations (in press).

3. D. Michie, D.J. Spiegelhalter and C.C. Taylor, “Machine learning, neural and statistical
classification”. Elis Horwood, London 1994

4. Duch W, Adamczak R. and @czewski K. (2001) Methodology of extraction, opti-
mization and application of crisp and fuzzy logical rulHsEE Transactions on Neural
Networks 12: 277-306

