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www.phys.uni.torun.pl/kmk

Abstract. Framework for Similarity-Based Methods (SBMs) allows to create many algo-
rithms that differ in important aspects. Although no single learning algorithm may outper-
form other algorithms on all data an almost optimal algorithm may be found within the SBM
framework. To avoid tedious experimentation a meta-learning search procedure in the space
of all possible algorithms is used to build new algorithms. Each new algorithm is generated
by applying admissible extensions to the existing algorithms and the most promising are re-
tained and extended further. Training is performed using parameter optimization techniques.
Preliminary tests of this approach are very encouraging.

1 Introduction.

There is no single learning algorithm that is inherently superior to all other algo-
rithms. This fact is known as the ‘no free lunch’ theorem [1]. Yet most efforts in
the computational intelligence field goes into the improvement of individual meth-
ods. For example, in the neural network field model selection efforts are restricted
to selection of architectures (number of nodes, each performing the same type of
functions) and improvements of the training schemes, while in the decision tree
field branching criteria and pruning strategies are discussed. A notable exception in
the machine learning field is the multistrategy learning introduced by Michalski [2].
Our own efforts in this direction include the introduction of heterogeneous adaptive
systems of decision tree [3] and of different neural networks types [4].

In real world applications a good strategy is to find the best algorithm that works
for a given data trying many different approaches. This may not be easy. First, not
all algorithms are easily available, for example there is no research or commercial
software for some of the best algorithms used in the StatLog project [5]. Second,
each program requires usually a different data format. Third, programs have many
parameters and it is not easy to master them all. Our "meta-learning" strategy here
is to use recently introduced framework for Similarity-Based Methods (SBM) [6]
to construct automatically the best model of the given data. A search for the best
model in the space of all models that may be generated within SBM framework is
performed. Simplest model are created at the beginning and new types of parame-
ters and procedures are added, allowing to explore more complex models. Neural
networks increase model complexity by adding the same type of parameters, gener-
ating different models within a single method. This is not a good strategy if the bias



of the method (in this case coming from particular type of transfer functions used
by the network) does not match the structure of the data. Creating different models
of the data using algorithms that have different biases should allow overcome the
"no free lunch" theorem and lead to relatively simple models that may be easily
understood.

Although the meta-learning approach is quite general and may be used for any
association, approximation and unsupervised learning tasks, this paper is focused on
methods useful for classification. In the next section the SBM framework is briefly
introduced, the third section presents the meta-learning approach used to select the
best method, and the fourth section contains our preliminary experiences in analyz-
ing a few datasets. Conclusions and plans for future developments close this paper.

2 A framework for meta-learning

By an algorithm, or a method, a certain well-defined computational procedure
is meant, for example a k-NN method or an RBF neural network. A model is an
instance of a method with specific values of parameters. The SBM framework [6]
covers all methods based on computing similarity between the new case and cases
in the training set. It includes such well-known methods as the k–Nearest Neighbor
(k-NN) algorithm and it’s extensions, originating mainly from machine learning and
pattern recognition fields, as well as neural methods such as the popular multilayer
perceptron networks (MLP) and networks based on radial–basis functions (RBF).

A function or a procedure to estimate the posterior probability p(C i|X;M), i =
1..K of assigning vector X to class Ci, depends on the choice of the model M, that
involves various procedures, parameters and optimization methods. Let N be the
number of attributes, K be the number of classes, vectors are written in bold face
while vector components are in italics. Given a set of objects (cases) {O p}, p = 1..n
and their symbolic labels C(Op), define useful numerical features X p

j = Xj(Op), j =
1...N characterizing these objects. This preprocessing step involves computing vari-
ous characteristics of images, spatio-temporal patterns, replacing symbolic features
by numerical values etc. Using a function suitable for evaluation of similarity or
dissimilarity of objects represented by vectors in the feature space, D(X,Y) create a
reference (or prototype) vectors R in the feature space using the similarity measure
and the training set T = {Xp} (a subset of all cases given for classification). The set
of reference vectors, similarity measure, the feature space and procedures employed
to compute probability define the classification model M.

Once the model has been selected it should be optimized. For this purpose de-
fine a cost function E[T ;M] measuring the performance accuracy of the system on
a training set T of vectors; a validation set V composed of cases that are not used
directly to optimize model M may also be defined and performance E[V ;M] mea-
suring generalization abilities of the model assessed. Optimize parameters of the
model Ma until the cost function E[T ;Ma] reaches minimum on the set T or on the
validation set E[V ;Ma]. If the model produced so far is not sufficiently accurate add
new procedures/parameters creating more complex model M a+1. If a single model



is not sufficient create several local models M (l)
a and use an interpolation procedure

to select the best model or combine results creating ensembles of models. All these
steps are mutually dependent and involve many choices described below in some
details.

The final classification model M is build by selecting a combination of all avail-
able elements and procedures. A general similarity-based classification model may
include all or some of the following elements:

M = {X(O),∆(·, ·),D(·, ·),k,G(D),{R},{pi(R)},E[·], K(·),S(·)}, where:
X(O) is the mapping defining the feature space and selecting the relevant features;
∆ j(Xj;Yj) calculates similarity of Xj, Yj features, j = 1..N;
D(X,Y) = D({∆ j(Xj;Yj)}) is a function that combines similarities defined for each
attribute to compute similarities of vectors; if the similarity function selected has
metric properties the SBM may be called the minimal distance (MD) method.
k is the number of reference vectors taken into account in the neighborhood of X;
G(D) = G(D(X,R)) is the weighting function estimating contribution of the refer-
ence vector R to the classification probability of X;
{R} is a set of reference vectors created from the set of training vectors T = {X p}
by some selection and optimization procedure;
pi(R), i = 1..K is a set of class probabilities for each reference vector;
E[T ;M] or E[V ;M] is a total cost function that is minimized at the training stage; it
may include a misclassification risk matrix R (Ci,Cj), i, j = 1..K;
K(·) is a kernel function, scaling the influence of the error, for a given training ex-
ample, on the total cost function;
S(·) is a function (or a matrix) evaluating similarity (or more frequently dissim-
ilarity) of the classes; if class labels are soft, or if they are given by a vector of
probabilities pi(X), classification task is in fact a mapping. S(Ci,Cj) function al-
lows to include a large number of classes, “softening" the labeling of objects that
are given for classification.

Various choices of parameters and procedures in the context of network com-
putations leads to a large number of similarity-based classification methods. Some
of these models are well known and some have not yet been used. We have ex-
plored so far only a few aspects of this framework, describing various procedures
of feature selection, parameterization of similarity functions for objects and sin-
gle features, selection and weighting of reference vectors, creation of ensembles of
models and estimation of classification probability using ensembles, definitions of
cost functions, choice of optimization methods, and various network realizations of
the methods that may be created by combination of all these procedures [6–8].

The k-NN model p(Ci|X;M) is parameterized by p(Ci|X;k,D(·),{X}}), i.e. the
whole training dataset is used as the reference set, k nearest prototypes are included
with the same weight, and a typical distance function, such as the Euclidean or the
Manhattan distance, is used. Probabilities are p(Ci|X;M) = Ni/k, where Ni is the
number of neighboring vectors belonging to the class Ci. The most probable class
is selected as the winner. Many variants of this basic model may be created [6,7].



Neural-like network realizations of the RBF and MLP types are also special cases
of this framework.

The SBM framework allows for so many choices that exploring all the choices
will be almost impossible. Instead an automatic search for the best model for a given
data within the space of all possible models is pursued below.

3 Search for the best model

A search tree in the space of all models Ma for the simplest and most accurate
model that accounts for the data requires a reference model that should be placed
in the root of the tree. The reference model should be the simplest possible. In the
SBM framework the k-NN model with k=1 and Euclidean distance function applied
to standardized data is a good reference model. Not all extensions may be applied
to all models. Instead of creating an expert system based on abstract description
of models and checking the conditions for applicability of extensions algorithms,
an "interaction matrix" defining possible extensions is defined. Interaction defines
how to combine models in order to create more complex models. Consider two
extensions of the basic model, one using an optimization of the number of nearest
neighbors k and the other using attribute selection method. The interaction in the
first algorithm says: ‘If the attribute selection method is preceding the optimization
of k in a model chain, optimize k with the attributes found by the earlier method’.
Interaction in the second algorithm says that if optimization of k is followed by the
attribute selection, the optimal k found earlier should be used to search for attributes.
Without interaction the meta-learning algorithm reduces to the single-level ranking
of basic models and does not create more complex methods.

Optimization should be done using validation sets (for example in crossvali-
dation tests) to improve generalization. Starting from the simplest model, such as
the nearest neighbor model, qualitatively new “optimization channel" is opened by
adding the most promising new extension, a set of parameters or a procedure that
leads to greatest improvements. The model may be more or less complex than the
previous one (for example, feature selection or selection of reference vectors may
simplify the model). If several models give similar results the one with the low-
est complexity is selected. For example, feature selection should be prefered over
feature weighting. The search in the space of all SBM models is stopped when no
significant improvements are achieved by new extensions.

The evaluation function C(Ml) returns the classification accuracy of the model
Ml calculated on a validation set or in the crossvalidation test. Let n denote the
initial number of possible extensions of the reference model. The model sequence
selection algorithm proceeds as follows:

1. Take the initial reference model as the best mode Mb.
2. Repeat until the pool of possible extensions is empty:
3. Create a pool of n initial models, M = {Ml}, l = 1 . . .n applying all extensions

to the best mode Mb.



4. Optimize all models in the pool.
5. Evaluate all these models C(Ml) and arrange them in a decreasing order of

accuracy Ca(Mi) ≥Ca(Mj) for i > j.
6. Select the best model Mb from the M pool as the reference; if several models

have similar performance select the one with lowest complexity.
7. If there is no significant improvement stop and return the current best model.
8. Otherwise remove the extension used to create this model from the list of avail-

able extensions; set n = n−1.

The interaction between the current “best model” and all possible extension de-
termines whether these extensions are applicable at a given stage. The number of
model optimizations is equal to the number of initial extensions n and does not
exceed n(n−1)/2).

The result of this algorithm is a sequence of models of increasing complexity,
without re-optimization of previously created models. This “best-first" algorithm
finds a sequence of models that give the highest classification accuracy on vali-
dation partition or in crossvalidation tests. In case of k-NN-like models validation
partition is rarely used since the leave-one-out calculations are easy to perform; for
more complex models crossvalidation calculations are performed. Such approach
may actually be preferable because rarely the data sets are sufficiently large to use
validation sets, and using only the training set makes comparison with other meth-
ods easier.

The algorithm described above is prone to local minima, as any “best-first" or
search algorithm. The beam search algorithm for selection of the best sequence of
models is more computationally expensive but it has a better chance to find a good
sequence of models. Since the SBM scheme allows to add many parameters and pro-
cedures, new models may also be created on demand if adding models created so
far does not improve results. Some model optimizations, such as the minimization
of the weights of attributes in the distance function, may be relatively expensive.
Re-optimization of models in the pool may be desirable but it would increase the
computational costs significantly. Therefore we will investigate below only the sim-
plest “best-first" sequence selection algorithm, as described above.

4 Numerical experiments

We have performed preliminary numerical tests on several datasets. The models
taken into account include optimization of k, optimization of distance function, fea-
ture selection, and optimization of the scaled distance functions:

D(X,Y)α =
n

∑
i=1

si|Xi −Yi|α (1)

In the present implementation of the program α is changed from 0.25 to 10 in 0.25
steps; this covers Euclidean (α = 2) and Manhattan (α = 1) weighted functions. Two



other distance function, Chebyschev (α = inf) and Canberra,

DC(X,Y) =
|Xj,Yj|
|Xj,−Yj| (2)

DCh(X,Y) = max
i=1,...,N

|Xi −Yi| (3)

are also included.
Various methods of learning by parameter optimization may be used. We have

used the multisimplex method, adaptive simulated annealing (ASA) method [9] and
a discretized search methods with progressive decreasing of quantization step (tun-
ing). One of the scaling coefficients si should be fixed to 1, since only relative dis-
tances play role in the similarity-based methods. Starting parameters are another
issue; initial scaling factors may start from zero or from one. Application of sim-
plex or ASA methods may lead to models with relatively large variance; one way to
stabilize these models is to create a number of models and use them in a committee
[10].

4.1 Monk problems

The artificial dataset Monk-1 [11] is designed for rule-based symbolic machine
learning algorithms (the data was taken from the UCI repository [12]). The nearest
neighbor algorithms usually do not work well in such cases. 6 symbolic attributes
are given as input, 124 cases are given for training and 432 cases for testing. We are
interested here in the performance of the model selection procedures.
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Fig. 1. Search for the best Monk2 data model.
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Fig. 2. Search for the best Monk3 data model.

The meta-learning algorithm starts from the reference model, a standard k-NN,
with k = 1 and Euclidean function. The leave-one-out training accuracy is 76.6%
(on test 85.9%). At the first level the choice is: optimization of k, optimization of
the type of similarity function, selection of features and weighting of features. Re-
sults are summarized in the Table below. Feature weighting (1, 1, 0.1, 0, 0.9, 0),
implemented here using a search procedure with 0.1 quantization step, already at
the first level of search for the best extension of the reference model achieves 100%
accuracy on the test set and 99.2%, or just a single error, in the leave-one-out es-
timations on the training set. Additional complexity may not justify further search.
Selection of the optimal distance for the weighted k-NN reference model achieves
100% on both training and the test set, therefore the search procedure is stopped.

Table 1. Results for the Monk-1 problem with k-NN as reference model.

Method Acc. Train % Test %

ref = k-NN, k=1, Euclidean 76.6 85.9
ref + k=3 82.3 80.6
ref + Canberra distance 79.8 88.4
ref + feature selection 1, 2, 5 96.8 100.0
ref + feature weights 99.2 100.0
ref = k-NN, Euclid, weights 99.2 100.0
ref + Canberra distance 100.0 100.0

In the Monk 2 problem the best combination sequence of models was k-NN
with Canberra distance function, giving the training accuracy of 89.9% and test



set accuracy of 90.7%. In the Monk 3 case weighted distance with just 2 non-zero
coefficients gave training accuracy of 93.4% and test result of 97.2%.

4.2 Hepatobiliary disorders

The data contain four types of hepatobiliary disorders found in 536 patients of a
university affiliated Tokyo-based hospital; 163 cases were used as the test data [13].
Each case is described by 9 biochemical tests and a sex of the patient. The class
distribution in the training partition is 34.0%, 23.9%, 22.3% and 19.8%. This dataset
has strongly overlapping classes and is rather difficult. With 49 crisp logic rules only
about 63% accuracy on the test set was achieved [14], and over 100 fuzzy rules based
on Gaussian or triangular membership functions give about 75-76% accuracy.

The reference k-NN model with k=1, Euclidean distance function gave 72.7%
in the leave-one-out run on the training set (77.9% on the test set). Although only
the training set results are used in the model search results on the test set are given
here to show if there is any correlation between the training and the test results. The
search for the best model proceeded as follows:

First level

1. Optimization of k finds the best result with k=1, accuracy 72.7% on training
(test 77.9%).

2. Optimization of the distance function gives training accuracy of 79.1% with
Manhattan function (test 77.9%).

3. Selection of features removed feature "Creatinine level", giving 74.3% on the
training set; (test 79.1%).

4. Weighting of features in the Euclidean distance function gives 78.0% on train-
ing (test 78.5%). Final weights were [1.0, 1.0, 0.7, 1.0, 0.2, 0.3, 0.8, 0.8, 0.0].

The best training result 79.1% (although 77.9% is not the best test result) is
obtained by selecting the Manhattan function, therefore at the second level this
becomes the reference model:

1. Optimization of k finds the best result with k=1, accuracy 72.7% on training
(test 77.9%).

2. Selection of features did not remove anything, leaving 79.1% on the training
(test 77.9%).

3. Weighting of features in the Manhattan distance function gives 80.1% on train-
ing (final weights are [1.0, 0.8, 1.0, 0.9, 0.4, 1.0, 1.0, 1.0, 1.0]; (test 80.4%).

At the third level weighted Manhattan distance giving 80.1% on training (test
80.4%) becomes the reference model and since optimization of k nor the selection of
features does not improve the training (nor test) result this becomes the final model.
Comparison of results on this data set is given below:

Since classes strongly overlap the best one can do in such cases is to identify
the cases that can be reliable classified and assign the remaining cases to pairs of
classes.



Table 2. Results for the hepatobiliary disorders. Accuracy on the training and test sets.

Method Training set Test set
Model optimization 80.1 80.4
FSM, Gaussian functions 93 75.6
FSM, 60 triangular functions 93 75.8
IB1c (instance-based) – 76.7
C4.5 decision tree 94.4 75.5
Cascade Correlation – 71.0
MLP with RPROP – 68.0
Best fuzzy MLP model 75.5 66.3
LDA (statistical) 68.4 65.0
FOIL (inductive logic) 99 60.1
1R (rules) 58.4 50.3
Naive Bayes – 46.6
IB2-IB4 81.2-85.5 43.6-44.6

4.3 Other data

We have tried the metalearning procedure on the ionosphere data [12]. Unfortu-
nately there was no correlation between the results on the training and on the test
set, so any good results in this case must be fortuitous.

The hypothyroid data [12] has 3772 cases for training, 3428 cases for testing, 22
attributes (15 binary, 6 continuous), and 3 classes: primary hypothyroid, compen-
sated hypothyroid and normal (no hypothyroid). The class distribution in the train-
ing set is 93, 191, 3488 (92.5%) vectors and in the test set 73, 177, 3178 (92.7%).
k-NN gives on standardized data slightly more than the base rate, but the search pro-
cedure finds first k = 4, then Canberra distance function and finally a set of weights
for each attribute, leading to 98.89% accuracy on the test set. This is better than the
best neural networks although still worse than logical rules for this data set [14].

5 Discussion

Although in this paper meta-learning was applied only to classification problems the
SBM framework is also useful for associative memory algorithms, pattern comple-
tion, missing values [6], approximation and other computational intelligence prob-
lems. Although only a few extensions to the reference k-NN model were used the
search in the model space automatically created quite accurate models. For hepato-
biliary disorders a model with highest accuracy for real medical data has been found.
Although the use of a validation set (or the use of the crossvalidation partitions) to
guide the search process for the new models should prevent them from overfitting
the data, at the same time enabling them to discover the best bias for the data other
ways of model selection, such as the minimum description length (cf. [1]), should
be investigated.



Similarity Based Learner (SBL) software developed in our laboratory includes
many procedures belonging to the SBM framework. Methods implemented so far
provide many similarity functions with different parameters, include several meth-
ods of feature selection, methods that weight attributes (based on minimization of
the cost function or based on searching in the quantized weight space), methods of
selection of interesting prototypes in the batch and on-line versions, and methods
implementing partial-memory of the evolving system. Many optimization channels
have not yet been programmed in our software, network models are still missing,
but even at this preliminary stage results are very encouraging.
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