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Abstract. A common task in data mining is the visualization of multivariate objects using
various methods, allowing human observers to perceive subtle inter-relations in the dataset.
Multidimensional scaling (MDS) is a well known technique used for this purpose, but it
due to its computational complexity there are limitations on the number of objects that can be
displayed. Combining MDS with a clustering method as Learning Vector Quantization allows
to obtain displays of large databases that preserve both high accuracy of clustering methods
and good visualization properties.

1 Introduction

Visualization helps in data exploration by providing the user an idea about clus-
ters in data and their mutual relations, shows outliers and allows for rough classi-
fication of data. A very popular way to visualize data is based on self-organizing
topographic feature maps (SOM) [1], known also as the Kohonen networks. SOM
is so popular because the method may be applied to very large databases and pro-
vides clusterization as well as visualization at the same time. Unfortunately SOM
networks are among the worst classifiers, as found in empirical studies [2]. There
are many better clustering methods than SOM, for example methods based on den-
drograms. We have compared SOM visualization using simplexes (up to dimension
20), hypercubes and points on the hypersphere, with a method that preserves correct
topographical relations among multidimensional objects [3,4]. These results clearly
show that minimization of a quantitative measures for the distortions of original data
topography, i.e. the multidimensional scaling technique [5,6], generates maps that
preserve both local and global features in a better way than SOM does.

Unfortunately MDS requires difficult minimization of cost function that is based
on distances among the represented multidimensional objects. For N objects N(N —
1)/2 distances enter the cost function, and if maps are 2-dimensional they have
2N — 3 adaptive parameters (position (x,y) of an arbitrary point and the rotation
angle, or y coordinate of a second point, may be fixed).

The MDS-based interactive software developed by one of us [7] performs a
mapping of multivariate data from a high-dimensional space (D-dimensional space,
D > 3) to data points in a lower d-dimensional space (d < D). Usually d = 2 in
order to allow visualization by scatterplots, but higher d values may be useful for
dimensionality reduction. The MDS dimensionality reduction is such that similar



(or close, in the sense of some distance measure in the D-dimensional space) mul-
tivariate objects are mapped on representative points close to each other in the d-
dimensional representation space. The mapping should preserve topography of data
vectors. Linear projections are often not able to preserve topography; such mappings
have to be non-linear. Topography preservation may be unreachable in the whole
feature space if the analyzed multivariate data is intrinsically high dimensional and
cannot be imbedded in a lower dimensional space without much distortion.

Combination of this algorithm with clusterization methods have several advan-
tages. First, hierachical clusterization methods or any other clusterization may be
used. Second, information about the cluster centers may be displayed on the map
and combined with MDS information, giving more details than dendrograms typi-
cally used to display clusters. Third, multi-level mapping, starting from large clus-
ters and creating smaller ones, may help to find a better MDS solution since initially
smaller number of points are mapped. Fourth, it may be applied to large datasets,
and thus be competitive to SOM, providing good clusterization and visualization.

The process that combines clusterization with dimensionality reduction is de-
scribed below. We have used Learning Vector Quantization (LVQ) for clusterization
[1] but any other algorithm can be used. Since it is not clear how accurate are the
maps created in this way, we have compared them to the original, fully optimized
maps in the third section. A short discussion concludes this paper.

2 Combining MDS with LVQ

A direct visualization by MDS of large datasets may be unpracticable due to the
limitation on the number of simultaneously mapped objects. Various approaches
have been proposed to tackle this problem. Our approach is similar to the so-called
frame method [8]. It proceeds as follows: First build (by some heuristics) a smaller
dataset (called the basis B), designed as a first approximation of the original large
dataset. Then map the Basis using standard MDS. Finally add to the mapped Basis
all the remaining cases from the original dataset. Let us denote D the dataset to be
visualized and Np the number of cases in this dataset. Let B denote the basis and
Ng be the size of the basis, N; = Ny, -+ N is the total number of points considered
during the mapping, F = {P;,i = 1,N;} the set of known data points and by M =
{R,i =1,Nn} the set of new data points. In Chang and Lee [8] the basis B is build
by selecting a subset of points from D, as a result the final display highly depends
on which points are selected. We prefer to use a clustering technique on the dataset
in order to obtain Ng cluster centers that more uniformly represent the data. For the
final step, we use relative MDS [13], where each new data is individually added
to the mapped Basis using an algorithm that is much less time consuming than the
full Stress minimization. The general process proposed for mapping large datasets
is shown in figure 1.

Relative MDS mapping differs from standard MDS in this respect that during
minimization of the topography distortion measure (called “Stress") only the points
from M set are allowed to move while the points from F set are kept fixed. This is
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Fig. 1. Process used for the visualization of large datasets: [ cilister the data using LVQ

to form the so-called Basis, Ijhp the Basis using standard metric MDS, |jA|jd the
remaining Dataset cases to the mapped Basis using relative MDS.

achieved by modifying the Stress function so that it sums only over the distances that
change during mapping, i.e. the distances between the added and the basis points,
and the added points interpoint distances. The original Stress function:

ND R 2
S(x) = D wij - (dij — dij) 1)
ij
is redefined as:
Np N R 2
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In relative mapping, the order in which the data are added does not influence the
final result because each case is added independently from the other cases. Relative
mapping can also be seen as an alternative to methods designed for the purpose of
giving generalization capability to Sammon mapping, such as the ANN Sammon
mapping [9], Neuroscale [10] or incremental scaling [11].

3 Visualization of the satimage dataset

It is interesting to see where a new data points “falls” among known cases, discover
the class of its neighbors (classified or labeled), and to get an insight on how a classi-
fier would evaluate this new data. Sat image dataset comes from the Landsat MSS
imagery, it consists of four digital images of the same scene in different spectral
bands. This dataset is often used to perform comparison of classifiers, and it is part



of the UCI repository [12]. The dataset is made of Np = 4435 cases with 36 numer-
ical features in the range 0 to 255. Each case stands for one pixel in the image, the
pixels are attributed to 6 classes standing for different soil types photographed.

The visualization of the Np cases has been performed by clustering the data
into N cluster centers. As we are interested in determining the optimal size for the
basis, we performed a series of mappings with different values for Ng and com-
pared the resulting displays visually and by means of the final Stress. The following
values were chosen: Ng = 100, 300,500, 700, 1000, 1200, 1300, this last value is the
maximum reachable with 256 MB of RAM. The final Stress values obtained are
presented in Fig. 2. As can be expected, the final Stress value decreases when the
Basis size increases. The curve should converge towards the lowest Stress obtained
when mapping all Np cases in one MDS run.
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Fig. 2. Final Stress values obtained after relative mapping of the dataset cases added to a
Basis of 100, 300, 500, 1000, 1200 and 1300 LVQ code vectors.

The whole mapped Sat image dataset is shown in figure 3. It can be seen that
a Basis size of Ng = 500 cluster centers is enough to get quite good display because
the obtained configuration does not change much for higher sizes. This optimal size
should also be observed on the curve of Fig. 2, where the “speed" of Stress decrease
slows down.

4 Discussion

The main advantage of MDS dimensionality reduction is that the topographical dis-
tortions induced can evaluated by the value of the Stress function reached during



minimization. In this paper we have shown that the main disadvantage of MDS, its
computational complexity, may be removed by mapping smaller number of cluster
centers and adding the remining points using relative maping. Interactive zooming
on interesting areas of the input space [13] allows for exploration of the neighbor-
hood of the case under inspection. Since there may be some uncertainty in the input
one may generate a number (for example 100) of vectors drawn from a Gaussian
distribution centered at this vector. The class of these additional points is deter-
mined using neural or other classification systems and corresponding points added
(using relative mapping) to the map. Visual inspection of such map allows estimat-
ing the probability of misclassification, proportional to the number of points from
alternative classes.
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Fig. 3. Visualization of Sat image dataset using different numbers of code vectors for LVQ
clustering, to which the whole dataset has been added by relative mapping.



