
NEURAL AND STATISTICAL METHODS FOR THE VISUALIZATION OF

MULTIDIMENSIONAL DATA

by

Antoine Naud

A thesis submitted in conformity with the requirements
for the degree of Doctor in Technical Science

Katedra Metod Komputerowych
Uniwersytet Mikołaja Kopernika w Toruniu

Copyright c© 2001 by Antoine Naud

Abstract

In many fields of engineering science we have to deal with multivariate numerical data. In

order to choose the technique that is best suited to a given task, it is necessary to get an in-

sight into the data and to “understand” them. Much information allowing the understanding

of multivariate data, that is the description of its global structure, the presence and shape of

clusters or outliers, can be gained through data visualization. Multivariate data visualization

can be realized through a reduction of the data dimensionality, which is often performed by

mathematical and statistical tools that are well known. Such tools are Principal Components

Analysis or Multidimensional Scaling. Artificial neural networks have developed and found

applications mainly in the last two decades, and they are now considered as a mature field of

research. This thesis investigates the use of existing algorithms as applied to multivariate data

visualization. First an overview of existing neural and statistical techniques applied to data vi-

sualization is presented. Then a comparison is made between two chosen algorithms from the

point of view of multivariate data visualization. The chosen neural network algorithm is Ko-

honen’s Self-Organizing Maps, and the statistical technique is Multidimensional Scaling. The

advantages and drawbacks from the theoretical and practical viewpoints of both approaches are

put into light. The preservation of data topology involved by those two mapping techniques

is discussed. The multidimensional scaling method was analyzed in details, the importance of

each parameter was determined, and the technique was implemented in metric and non-metric

versions. Improvements to the algorithm were proposed in order to increase the performance of

the mapping process. A graphical user interface software was developed on the basis of those

fast mapping procedures to allow interactive exploratory data analysis. Methods were designed

to allows the visualization of classifiers decision borders.

ii

Streszczenie

W wielu dziedzinach nauk in˙zynieryjnych mamy do czynienia z numerycznymi danymi wielo-

wymiarowymi. Wybrác najbardziej odpowiedniej metody do rozwi ˛azywania danego problemu

często wymaga wgl ˛adu w dane aby je “zrozumieć”. Znaczna cz˛ésć informacji pozwalaj ˛aca

na zrozumienie danych wielowymiarowych, tak jak określenie ich globalnej struktury, obec-

ności oraz kształtu klasterów lub danych odległych, mo˙ze býc uzyskana przez vizualizacj˛e

tych danych. Wizualizacja danych wielowymiarowych mo˙ze býc zrealizowana za pośred-

nictwem redukcji wymiarowósci danych, która bywa cz˛esto wykonana przy pomocy dobrze

znanych narz˛edzi matematycznych lub statystycznych. Przykładowymi takimi narz˛edziami

są: Analiza Składników Głównych oraz Skalowanie Wielowymiarowe. Sztuczne sieci neu-

ronowe znalazły wiele zastosowań w ostatnich latach, stanowi ˛a one dzís dojrzał ˛a dziedzinę

naukow ˛a. Poniższa praca analizuje zastosowanie istniej ˛acych algorytmów do wizualizacji

danych wielowymiarowych. Przedstawiono przegl ˛ad szeregu istniej ˛acych neuronowych i staty-

stycznych metod wykorzystanych do wizualizacji danych. Nast˛epnie porównano dwa wybrane

algorytmy ze sob ˛a z punktu widzenia wizualizacji. Wybrano sieć neuronow ˛a typu Samo-

Organizuj ˛acej się Mapy Kohonen’a i statystyczn ˛a metodę eksploracyjnej analizy danych Skalo-

wanie Wielowymiarowe. Przedstawiono zalety i wady obu metod z punktu widzenia teorety-

cznego i praktycznego. Omówiono zachowanie topologii danych wynikaj ˛ace z tych rzutowán.

Metoda skalowania wielowymiarowego została szczegółowo zanalizowana z podkreśleniem

roli każdego jej elementu i parametru. Zaimplementowano wersje metryczne i niemetryczne

tej metody. Zaproponowano ró˙zne rowiązania poprawiaj ˛ace skutecznósć i szybkósć działania

procesu rzutowania. Program został wyposa˙zony w graficzny interfejs dla u˙zytkownika, dzięki

czemu tworzy narz˛edzie do interakcyjnej eksploracji danych wielowymiarowych. Opracowano

też metody wizualizacji granic decyzji klasyfikatorów.

iii

Acknowledgements

I want to thank my supervisor, prof. Włodzisław Duch, for his advice, support and guid-
ance.

The members of the Department of Computer Methods (KMK) gave me help and support,
ranging from solving problems with computer and software, to providing me with their data
and programs as well as running many calculations for me. I would like to thank in particular
Rafał Adamczak, Karol Grudziński, Krzysztof Gr ˛abczewski and dr Norbert Jankowski.

I would also like to thank prof. Noel Bonnet for his help and the collaboration we had
during my stay in Reims and our meetings in Antwerp.

The most important “acknowledgement” goes to my wife El˙zbieta.

iv

Contents

1 Introduction 1
1.1 The need for data visualization .. 1
1.2 An overview of multivariate data visualization techniques 2
1.3 The paradigm of data visualization by dimensionality reduction 4
1.4 Aims of the research 5
1.5 Structure of the thesis 5

2 Linear mapping by Principal Components Analysis 6
2.1 Spectral decomposition of the correlation matrix 7
2.2 Singular Value Decomposition of the data matrix 8
2.3 Experimental comparison of the two approaches 8

2.3.1 Variance on the principal axes 8
2.3.2 Visual comparison of configurations 9
2.3.3 Limitations of PCA dimensionality reduction. 10

2.4 Neural network implementations of PCA 11

3 The neural networks approach: Self-Organizing Maps 12
3.1 What are Artificial Neural Networks? 12
3.2 Artificial Neural Networks used for dimensionality reduction and data visual-

ization . 13
3.2.1 Self-Organizing Maps (SOM) 13
3.2.2 Autoassociative Feedforward Neural Network (AFN) 13
3.2.3 Curvilinear Components Analysis (CCA) 13
3.2.4 NeuroScale. 14
3.2.5 Other neural network implementations of multidimensional scaling . . 15
3.2.6 The Generative Topographic Mapping (GTM). 15

3.3 Kohonen’s Self-Organizing Maps. 16
3.3.1 Introduction. 16
3.3.2 Problems and limitations of the model. 18
3.3.3 Data topography preservation and its measures 22
3.3.4 Applications of SOM to multivariate data visualization 24

4 The statistical approach: Multidimensional scaling 27
4.1 Introduction 27

4.1.1 Narrow and broad sense definitions of multidimensional scaling 27
4.1.2 Overview of Multidimensional Scaling techniques 28
4.1.3 Metric and non-metric MDS 30
4.1.4 Classical scaling 30

4.2 Least Square Scaling algorithm .. 31
4.2.1 The Stress function 31

v

4.2.2 Outline of the algorithm. 35
4.2.3 Sammon’s non-linear mapping 36
4.2.4 Kruskal’s non-metric scaling 36
4.2.5 A comparison of metric and non-metric MDS. 40

4.3 Problems and limitations of the MDS model 43
4.3.1 Time complexity 43
4.3.2 Sensitivity to initial configuration 43
4.3.3 Local minima 43
4.3.4 Lack of explicit mapping function usable for new data 44

4.4 Proposed improvements 45
4.4.1 Least Squares of squared distances 45
4.4.2 Choice of initial configuration 45
4.4.3 Global minimization of Stress 45
4.4.4 Improvement of convergence by step-size optimization 46
4.4.5 Mapping new data using “relative” mapping 49
4.4.6 Zooming on subspaces using “localized” mapping 51

5 A comparison of MDS and SOM algorithms in practice 53

6 Applications of MDS 57
6.1 Visualization of psychometric data 58

6.1.1 Database visualization .. 58
6.1.2 Detection of outliers . .. 67
6.1.3 Zooming in interactively chosen data subspaces 67

6.2 Visualization of classifiers decision borders 69
6.2.1 Visualization of classifiers decision borders – Approach 1. 70
6.2.2 Visualization of classifiers decision borders – Approach 2. 74
6.2.3 Conclusion. 82

6.3 Visualization of other medical data 82
6.3.1 Visualization of large data sets 82
6.3.2 Understanding classification results using thek–nearest neighbors clas-

sifier . 84

7 Conclusions 85
7.1 Summary 85
7.2 Further developments 85

A Optimized step-size for steepest descent minimization 87
A.1 Unified expressions forStress . 87

A.1.1 Interpoint distances derivatives 88
A.1.2 Stress gradient expressions 88
A.1.3 Stress Hessian matrix expressions 89
A.1.4 Optimal step-size expressions 89

A.2 Expressions forSStress . 91

B Outline of the interactive software 92
B.1 TheDataSet class. 92
B.2 TheMapping class. 97

Bibliography 100

vi

List of Tables

2.1 Distributions of variance among features for thebreast data set. 9

4.1 Derivation of target distances using Kruskal’s monotone regression procedure. 38

6.1 Classification by neural network (IncNet) of chosen data points from the
psychometric database. . .. 75

vii

List of Figures

2.1 Visualization ofbreast data set by Principal Components Analysis. 10
2.2 Linear and non linear mappings for the visualization ofsimplex5 data set. . . 10

3.1 Generic structure of an Artificial Neural Network 12
3.2 Data visualization using Self-Organizing Map Neural Network 16
3.3 The areal magnification effect:iris data set displayed on SOM maps (“hexag-

onal” topology, 40× 25 nodes). The area coding classversicolor (blue
dots) is magnified in 3.3(b). 18

3.4 Codebook initialization: A square SOM network trained on thetriangle
data set (and displayed on the triangle surface) after two different random ini-
tializations. 19

3.5 Distortions due to the map shape: A sphere mapped using two different SOM
maps is visually much more distorted than using Sammon’s mapping. The
sphere isunfolded by SOM in a similar manner to the mappings obtained by
CCA (see §3.2.3). .. 20

3.6 Different visualizations ofiris data set trained on a SOM map with “hexag-
onal” neighborhood of 40×25 nodes. 26

4.1 MDS mappings (PCA initialization) obtained for Stress functionsS1 andS3,
and the corresponding Shepard diagrams foriris andcancer data sets. . . . 33

4.2 Histograms of inter-points distancesdi j for iris (left) andcancer (right). . 34
4.3 Shepard diagram illustrating the monotone regression procedure. 38
4.4 Comparison of metric and non-metric MDS minimization processes. 42
4.5 Comparison of metric and non-metric MDS final configurations. Crosses rep-

resent configuration obtained from metric MDS, circles represent nonmetric
MDS configurations. Lines link the two positions of each data point from the
two configurations. 42

4.6 3-dimensional “views” of Stress functions: Axesx andy represent one point’s
coordinates in the 2D space, the other points from the data set are fixed. 44

4.7 Comparison of final Stress values reached after random and Principal Compo-
nents initializations.. 46

4.8 Comparison of Stress minimization by Kruskal’s or optimized step-size. 48
4.9 Comparison of Stress minimization by approximate Newton method (Sam-

mon’s), conjugate gradient and optimized steepest descent. 49
4.10 Mapping new data using “relative” mapping. 51

5.1 A comparison of SOM (left) and MDS (right) mappings for three data sets. . . 56

6.1 Psychometricwomen database visualized using PCA mapping: data points
mapped on the two first principal components.. 59

viii

6.2 Psychometricwomen database visualized using MDS mapping: PCA initial-
ization, final Stress:S1 = 0.021 (142 iterations). 60

6.3 Psychometricwomen database visualized using the Self-Organizing Maps map-
ping: 100×75 neurons, random init. nb. 8. 61

6.4 Psychometricwomen database visualized using the Self-Organizing Maps map-
ping: decision borders are visualized. 62

6.5 Psychometricmen database visualized using PCA mapping: data points mapped
on the two first principal components. 63

6.6 Psychometricmen database visualized using MDS mapping: PCA initializa-
tion, final Stress:S1 = 0.018 (471 iterations). 64

6.7 Psychometricmen database visualized using the Self-Organizing Maps map-
ping: 100×75 neurons, PCA initialization. 65

6.8 Psychometricmen database visualized using the Self-Organizing Maps map-
ping: decision borders are visualized. 66

6.9 Zooming in an interactively chosen database subspace using MDS mapping. . . 68
6.10 Two multivariate Gaussian distributions with a planar decision border. 71
6.11 Visualization ofappendicitis data set with classification rule (6.1). 73
6.12 Zooming in the neighborhood of datap5 (black dot) from classnorma (norma–

blue, schizofrenia–red, nerwica–green) on plots a to f.IncNet classifier’s
decision borders on plots g and h. 76

6.13 Zooming in the neighborhood of datap554 (black dot) from classorganika
(organika–light blue, schizofrenia–red, nerwica–green) on plots a to f.Inc-
Net classifier’s decision borders on plots g and h. 77

6.14 Zooming in the neighborhood of datap604 (black dot) from classorganika
(light blue) on plots a to f.IncNet classifier’s decision borders on plots g and h. 78

6.15 Zooming in the neighborhood of datap270 (black dot) from classnerwica
(green) on plots a to f.IncNet classifier’s decision borders on plots g and h. . 79

6.16 Zooming in the neighborhood of datap426 (black dot) from classnerwica
(green) on plots a to f.IncNet classifier’s decision borders on plots g and h. . 80

6.17 Visualizations ofthyroid data set: the number of points was reduced from
3772 to 1194 (2578 points from classnormal that have their 4 nearest neigh-
bors in classnormal were removed from the data set). 83

6.18 Thecukrzyca data set:S1 = 2.46e−4, 42-nd randomly initialized trial. . . . 84

B.1 TheIMDS software: a data set with itsdata andplot views. 94
B.2 TheIMDS software: plot view of a data set and itsLegend dialog box. 95
B.3 TheIMDS software: Dataselection andzooming dialog boxes. 97
B.4 TheIMDS software: the Mapping dialog box and its three pages. 99
B.5 TheIMDS software: Mapping run window and plot view of the mapped

data set. 100

ix

List of abbreviations
AFN Auto-associative Feedforward Neural Network

ALSCAL Alternating Least squares SCALing

ANN Artificial Neural Network

ART Adaptive Resonance Theory

BMU Best Matching Unit

CA Correspondence Analysis

CCA Curvilinear Components Analysis

EDA Exploratory Data Analysis

GTM Generative Topographic Mapping

KDD Knowledge Discovery in Databases

KNN k-Nearest Neighbors

KYST Kruskal Young Shepard Torgerson Kruskal, Young and Seery. A merger of M-D-SCAL
(5M) and TORSCA which combines best features of both, plus some improvements.
Fortran IV code and manual available at StatLib. One of the first computer programs for
multidimensional scaling and unfolding. The name KYST is formed from the initials of
the authors.

LDA Linear Discriminant Analysis (or Fisher’s Discriminant Analysis)

LSS Least Square Scaling

LVQ Learning Vector Quantization

MDS Multidimensional Scaling

MLP Multi-Layer Perceptron

MSA Multivariate Statistical Analysis

MST Minimal Spanning Tree

NLM Sammon’s Non Linear Mapping

PCA Principal Components Analysis

PCO Principal Coordinates Analysis

PSN Principal Subspace Network

QR Algorithm computing the decomposition of any real matrixA into a productQ ·R, where
Q is orthogonal andR is upper triangular, using Householder transformations.

RBF Radial Basis Function

x

SA Simulated Annealing

SMACOF Scaling by MAjorizing a COmplicated Function

SOM Self-Organizing Map

SVD Singular Values Decomposition

VQP Vector Quantization and Projection

xi

Glossary of notation
{Oi} a collection of objects studied and described by some measurements,

N the number of objects under consideration:{Oi, i = 1, ...,N},

D the number of measurements performed on each object (or features),

D theD-dimensional data space (or feature space) in which the objects are described,

X a [N×D] matrix of the coordinates of theN objectsOi in the data spaceD,

d the number of dimensions or features with which the objects are to be represented,

M thed-dimensional map (or representation) space in which objects are represented,

{Pi} a set of points that represent the objects{Oi} in the data spaceD,

xi a D-dimensional vector representing pointPi in the data spaceD,

{pi} a set of points that represent the objects{Oi} in the mapping spaceM,

yi a d-dimensional vector representing pointpi in the mapping spaceM,

Y a [N×d] matrix of the coordinates of theN pointsPi in the mapping spaceM,

Y a (N×d) vector of the coordinates of theN pointsPi, ordered point-wise,

Nt the total number of points taken into account in one MDS mapping,

Nm the number of points moving during the mapping (Nm = Nt if no fixed point),

Nd the number of inter-point distances that are varying during the mapping process,

δi j dissimilarity of objectsOi andO j, given as input or computed in the data spaceD,

Di j distance measure between pointsi and j in the input space,

di j distance measure between pointsPi andPj in the output space,

d̂i j disparity that measures how well the distancedi j “matches” the dissimilarityδi j,

wi j a weight associated to the pair of objects{Oi,O j},

S(Y) Stress function value evaluated for the configuration held in matrixY,

∇ S(Y) gradient vector of Stress functionS, evaluated atY,

HS(Y) Hessian matrix of Stress functionS, evaluated atY,

αS length of the move towards the opposite of the gradient ofS(Y), called step-size.

In Stress expressions, the notation
N
∑

i< j
means

N−1
∑

i=1
(

N
∑

j=i+1
), and

N
∑

i�= j
means

N
∑

i=1
(

i−1
∑
j=1

+
N
∑

j=i+1
).

xii

The author’s software contribution
Programs for the Self-Organizing Maps:

• The SOM_PAK package [81] was used for the training of the SOM Neural Network, a
few features were added, input of training parameters read from a separate text file,

• All the presented tools for map visualization were developed in the C language, except
the U-matrix visualization tool that came with the SOM_PAK package.

Programs for Multidimensional Scaling:

• Metric and non-metric algorithms were entirely developed in the C++ language. Non-
metric MDS was implemented firstly in the C language on the basis of Kruskal’s KYST
Fortran source [90]. Then it was translated into the C++ language including different
proposed original improvements. Line command versions of those procedures were de-
veloped using the Borland C++ environment v.5.01,

• The graphical user interfaceIMDS allowing real-time visualization of mappings and in-
teractive focusing on desired sub-sets was entirely developed using Borland C++ Builder
v.4.0 development tool, it runs on Windows platform.

xiii

Chapter 1

Introduction

1.1 The need for data visualization

The rapid development of computers of the last decades allowed people to store and analyze an
increasing number of data. Researchers more and more often have to deal with tens or hundreds
of variable measurements that they obtained from the objects observed in their experiments.
In some situations, the structure of the objects under consideration is well understood and a
rather good model is known (e.g. a normal distribution). If no model of the data exist, some
insight or understanding of the data can be gained by extracting from the data themselves
information about their structure or patterns. A data-driven search for statistical insights and
models is traditionally calledExploratory Data Analysis [134]. The nature of this information
can be statistical (mean, variances, and so on) or more closely related to human observation
capabilities (structures, clusters or dependencies). It is much easier for a human observer to
detect or extract some information from a graphical representation of experimental data than
from raw numbers. Visualization of multivariate data is hence often used to provide a synthetic
view of patterns or clusters formed by the data, or to detect outliers [5]. This is why researchers,
technicians or practitioners working with multidimensional data are very interested in data
visualization software.

In order to introduce some notation, let us now consider the following general experimental
situation: an observation is conducted on a finite number, sayN, of objects{Oi, i = 1, ...,N}.
The observer is taking a finite number, sayD, of measurements of different nature on each
objectOi. We assume here that all the measurements are taken successfully for all the objects
(there is no missing value). The nature of the measurements taken, called here variables, are
the same for all the objects, and each measurement gives a real number. The measurements can
be arranged in a[N×D] real matrixX (each row ofX correspond to an object and each column
to a variable).

If only two variables are available (2-dimensional data,D = 2), a simple way to obtain a
graphic representation of the objects is the scatter plot: on a plane spanned by 2 orthogonal
axes−→x and−→y representing the 2 variables, we plot a pointPi(x,y) with coordinates equal to
the 2 measurements for objectOi, that isx = x1,y = x2. This simple idea can be extended to the
caseD > 2 by making scatter plots of all the possible pairs of variables (calledpair wise scatter
plots). But when the number of variables increases, the increasing number of scatter plots does
not allow a synthetic view of the data by a human observer. Two alternative approaches can
be distinguished to enable observation of high dimensional data on a graphic display: whether
all the dimensions (or only the most important ones) are displayed together by some graphical
means other than a scatter plot, or the number of dimensions is first reduced to 2 or 3 and the
data in new dimensions are represented using a scatter plot.

1

At present, there exist a large number of different techniques allowing graphical representation
of experimental data. The different visualization tools are designed depending on the different
types of data available and on the goal of the visualization.

1.2 An overview of multivariate data visualization techniques

Let us now present briefly a number of methods that have been developed for the purpose
of multivariate data visualization. The aim of this overview is not to provide an exhaustive
panorama of the existing techniques, but to outline the variety of approaches.

• Feature selection and feature extraction methods: The dimensionality of the data can be
reduced by choosing a few features that best describe our problem (feature selection), or
by combining the features to create new ones that are more informative according to a
given criterion (feature extraction). As mentioned in [121] and [120], the quality of the
resulting mapping will depend on whether the chosen criterion for the new features is
really satisfied by the data.

• Piecewise Linear Mapping: Data visualization through the minimization of piecewise-
linear and convex criterion functions has been proposed in [17]. Algorithms similar to
the linear programming methods minimize these functions based on a concept of clear
and mixed dipoles. This general framework can be used to generate, among others visu-
alizations based on Fishers discriminant analysis.

• Non Linear Mappings: The family of Multidimensional Scaling techniques [85], with
e.g. Sammon’s mapping [115] and its enhancements ([102] with a more general error
criterion and the use of parameters that improve the algorithm’s convergence) or variants
facing the problem of large data sets by adjusting only a pair of points at each step
(relaxation method) or by selecting a subset of points (frame method) [23] (see [129, p.
126]).

• Sequential non linear mappings: The triangulation method [92] performs a sequential
mapping of high-dimensional points onto a plane. The idea is to map each point pre-
serving exactly its distances to 2 previously mapped points, using the distances of the
minimal spanning tree (MST) of the data. This method leads to an exact preservation
of all the distances of the MST, but it is sensitive to the order in which the points are
mapped. The equal-angle spanning tree mapping [138] is similar to the triangulation
method, with the difference that it leads to the preservation of the minimal spanning tree
itself (that is, input and mapped data have the same MST).

• Projection pursuit: Projection pursuit [50] is a technique that seeks out “interesting” lin-
ear projections of multivariate data onto lines or planes. The best projection line or plane
is the one for which an “interestingness” or projection index is maximized (by a classical
optimization technique). Friedman and Tukey proposed an index of interestingness pur-
posely designed to reveal clustering. This index was defined as a product of a measure
of the spread of the data by a measure of data local density after projection. This leads
to projections tending to concentrate the points into clusters while, at the same time,
separating the clusters. This is similar to Fisher’s discriminant’s heuristic, but without
making use of the data class information. This technique suffers from the limitations of
any linear mapping, having difficulty in detecting clustering on highly curved surfaces in
the data space.

• Grand tour method: A human can observe simultaneously at most three dimensions, so
data visualization in a 3-dimensional space is useful and provide more information than
in 2 dimensions. Grand tour methods [19], a part of the computer graphical system Xgobi
[124], allow rotating graphs of three variables. This method is based on the simple idea of
moving projection planes in high dimensional data spaces. Projecting high dimensional
data onto these planes in rapid succession generates movies of data plots that convey a
tremendous wealth of information.

• The biplot: The biplot devised by Gabriel [54] [61] is closely related to the scatter plot of
the first principal components, but additionally to theN points plotted for theN objects
or observations, it containsD points representing theD dimensions or variables used.
Some of the techniques of Correspondence Analysis produce similar kinds of plots. The
term biplots is also used in [61] to name a family of techniques (including MDS, CA or
PCA) leading to a graphical representation which superimpose both the samples and the
variables on which the samples are measured. The ‘bi’ in biplots arises from the fact that
both the samples and the variables are represented on the same graph. In the family of
multidimensional scaling techniques,unfolding is one with a purpose of producing such
plots containing “subject” points and “stimulus” points.

• Cluster analysis techniques: This last category of methods differs from the majority of
other methods by the fact the class information of the data points is mainly used. The
basic objective in cluster analysis is to discover natural groupings of the objects. Search-
ing the data for a structure of “natural” groupings is an important exploratory technique.
Groupings can provide an informal means for assessing dimensionality, identifying out-
liers, and suggesting interesting hypotheses concerning relationships. The techniques
described here are always accompanied by a graphical representation of the groupings.
Grouping is done on the basis of similarities or distances (dissimilarities), so the input
required are similarity measurements or data from which similarities can be computed.
It is clear that meaningful partitions depend on the definition ofsimilar as well as on the
grouping technique.

• Special pictorial representations: Some techniques have been designed to display multi-
variate data in 2-dimensional graphics directly (that is without dimensionality reduction).
We can mention here multiple 2-dimensional scatter plots (for all the pairs of variables),
Andrews plots [2] or Chernoff faces [24], which are discussed in [46]. Categorical mul-
tivariate data can also be represented on a synthetic scatter plot as proposed in [72, pp.
147-150].

There exist very few comparisons of different projection algorithms in the literature. Such
attempts have been presented in [15], [120] and [121]. In this last paper, Siedlecki et al. pre-
sented an attempt to systemize mapping techniques, which can be summarized as follows:

• Linear vs. Non linear transformations: A linear transformation is a transformation for
which there is a linear relationship between the input and output data of this transforma-
tion, that is, the mapping is executed by a matrix multiplication. Within this category,
we can distinguish principal components based methods, Fisher’s discriminant’s based
methods, least squares and projection pursuit methods.

• Analytic vs. Non analytic transformations: Analytic transformations map every point in
theD-dimensional data space, whereas non analytic transformations do not provide any
analytical expression that would tie the coordinates of aD-dimensional data point with
the coordinates of its planar representative.

The authors noted that the separation into linear and non-linear transformations corresponds
almost exactly to the analytic and non-analytic transformations. We will see in the following
chapters of this work that this correspondence does not hold for the methods available today,
especially when considering neural networks. A last category can be added to the previous
ones, which issupervisedvs. unsupervisedmethods, that is mappings that make use or not of
the data class information.

1.3 The paradigm of data visualization by dimensionality re-
duction

We are concerned in this part with the techniques allowing the visualization of high dimen-
sional data through a reduction of its dimensionality. In order to obtain a satisfying graphical
representation of the objects under consideration, the dimensionality reduction of the objects
must preserve the informationthat is important to the observer for its analysis. The important
information is often a distance or similarity measure, or else inter-point variance. The search
for this mapping or projection is called here thedimensionality reduction problem (DR), which
we formulate as follows:
Let {xi j, j = 1, ...,D} be a series ofD experimental measurements taken on objectOi. The
measurements performed on a set ofN objects are arranged in a[N×D] matrix X calleddata
matrix. Each objectOi can be seen as a pointPi in a D-dimensional metric space, and is de-
scribed by aD-dimensional vectorxi = (xi1 · · ·xiD)T . The DR problem consists in looking for
a configuration ofN points{Qi, i = 1, ...,N} in a space of dimensionalityd < D in which each
pointQi will represent an objectOi in the targetd-dimensional space, so as to satisfy aninfor-
mation criterion IC. Let Y be the matrix of the coordinates of theN points{Qi} constructed in
the same way as matrixX.X = [xi j] =

 x11 · · · x1D
...

. . .
...

xN1 · · · xND

 , IC

 =⇒ Y = [yi j] =

 y11 · · · y1d
...

. . .
...

yN1 · · · yNd

 (1.1)

The fact that the dimensionality of the points is reduced involves an unavoidable loss of infor-
mation, and the criterionIC is seldom fully satisfied. The method used has to be such that the
information contained in the datathat is important to the user is preserved as much as possi-
ble. Various methods employed to compute the reduced dimensions will differ on what kind
of information will be retained. (The information criterionIC can be for example: inter-point
Euclidean distances preservation, the rank orders of inter-point distances preservation, the pres-
ence of clusters of data or variances of variables).
The need for dimensionality reduction also arises from more practical reasons. Although
present computers have still growing memory and computing capabilities, software needs are
always increasing, so that dimensionality reduction is helpful in the following computer tasks:

• DR allows to reduce the amount of memory needed to store information represented by
vectors, such as images or videos,

• DR makes easier and faster further manipulation of the data,

• DR saves computation time spent to process or analyze the data (in subsequent classifi-
cation or clustering tasks)

• DR can improve the analysis performances by reducing the effect of noisy dimensions.

In pattern recognition, where the data have to be used as input to processing procedures whose
computation time can grow importantly with the number of dimensions, DR is necessary to
enable the use of certain techniques. This is especially crucial for data such as images or
acoustic signals because the number of such objects under analysis is usually high. The problem
calledcurse of dimensionality, appearing when the ratio of the number of points to the number
of dimensions is too low can also be avoided by DR [43].

1.4 Aims of the research

The main objective of the thesis is to compare and apply SOM and MDS algorithms as tools
for multivariate data visualization. When desirable for this purpose, some improvements of the
existing algorithms were proposed. This objective is divided into the following points:

• Study SOM algorithm and analyze the resulting mappings,

• Study MDS algorithm and analyze the resulting mappings,

• Compare SOM and MDS mappings from the point of view of data topology preservation,

• Improve and apply MDS mapping to the interactive visualization of multivariate data and
classifiers decision borders.

1.5 Structure of the thesis

Before focusing on the two main algorithms under the scope of this work (Self-Organizing
Maps and Multidimensional Scaling), the well known method of Principal Components Anal-
ysis is presented in the next chapter (chapter 2). A first reason for this is that this method
performs a linear dimensionality reduction, whereas the other two are non-linear, so it is in-
teresting to study its specificity. A second reason is that PCA is often used to initialize the
other two methods for which the better the initialization, the better the final result. Then the
two non-linear mapping methods are presented as iterative methods that start from an initial
guess and improve it step by step to lead to the result. The Self-Organizing Maps algorithm is
presented in chapter 3 among other artificial neural networks used in data visualization. The
main features and limitations of this approach to data visualization are presented from a prac-
tical point of view. A few data sets are visualized to illustrate in which manners the algorithm
allows the display of data. Chapter 4 is devoted to the Multidimensional Scaling techniques,
where details are given on two of the most popular existing implementations of Least Squares
Scaling: Sammon’s non-linear mapping and Kruskal’s non-metric MDS. Practical limitations
are described, and various improvements are proposed to fasten the calculations and optimize
the results. The following chapter 5 contains a short comparison of the SOM and MDS meth-
ods from a practical point of view. Then MDS is applied to various real-life data visualization
tasks in chapter 6. Several tools helping the interactive exploration of databases are used to
visualize some medical data sets, and finally MDS is applied to the visualization of classifiers
decision boundaries. A conclusion chapter (7) summarizes the most important results of this
work and lists promising possible further developments.

Chapter 2

Linear mapping by Principal Components
Analysis

The use of principal components analysis to solve the dimensionality reduction problem can
be summarized as follows: first, a linear transformation of the data points is searched so that
the variances of the points in the transformed dimensions are in decreasing order of magnitude.
Then a selection of the firstd dimensions allows to obtain a set of points with reduced dimen-
sionality that preserve the variance optimally. Hence the criterion used is the preservation of
the variance on the variables, making the underlying assumption that important information
lies in the variances. It can be shown that if a set of input data has eigenvalues(λ1,λ2, ...,λn)
and if we represent the dataD coordinates on a basis spanned by the firstd eigenvectors, the

loss of information due to the compression isE =
D
∑

i=d+1
λi.

The methods described in this section are calledlinear methods because the variables
searched are linear combinations of the original variables. The statistical techniques by which
such a reduction of data is achieved are known collectively asfactor analysis1. In contrast to
iterative methods that will be the object of the following Chapters 3 and 4, linear methods are
calleddirect methods because a solution to the dimensionality reduction problem is derived an-
alytically. Whereas in direct methods a solution is computed in one step, in iterative methods a
starting guess is first computed and a number of approaching steps are taken to find a solution.
It must be noted that the division made here between direct and iterative methods holds for the
precise algorithms that will be discussed in Chapters 3 and 4 of this thesis, but not for all the
methods bearing the names PCA or MDS. For example in Chapter 4 devoted to multidimen-
sional scaling methods, a direct method is referred to (Classical scaling or Gower’s PCO [60]).
Inversely, Oja’s neural network version of PCA [105] is, as any Artificial Neural Network, an
iterative algorithm.
Linear methods have a long history (Principal Components Analysis was introduced in [107]
[70]), they are well known and have been successfully applied in various fields of science.
They are Multivariate Statistical Analysis methods using tools from matrix algebra, hence their
presentation in the formalism of matrix algebra.
The principal components of a set of points are linear combinations of their variables that have
special properties in terms of variances. The first Principal Component (PC) is the normalized
linear combination of the variables with maximum variance, the second PC is the normalized
linear combination of the variables perpendicular to the first PC with maximum variance, and

1The object of factor analysis is to find a lower-dimensional representation that accounts for the correlations
among the features, whereas the object of principal components analysis is to find a lower-dimensional represen-
tation that accounts for the variance of the features. [43, p. 246]

6

so on. So if we want to obtain a dimensionally reduced set of points that preserve as much as
possible the variances of the original set of points, an optimal choice is to take forY thed first
PCs ofX. The principal components of a set of points can be computed in several ways, but
two main approaches are generally distinguished:

• The first approach has the longest history in multivariate statistical analysis and is the
best known. It consist in computing first the between variables covariance or correlation
matrix S of matrix X, and then taking the spectral (or eigenvalue) decomposition ofS.
Dimensionality reduction is obtained by projections of the points{Pi} (the rows ofX) on
thed first principal components ofS.

• In the second approach, the principal components of the points are obtained from the
Singular Value Decomposition (SVD) of matrixX. There is no need here to compute
a covariance or correlation matrix. The main advantage of the SVD approach over the
spectral decomposition approach lies in its better numerical stability [112, p. 290]. The
price for this is a greater need for memory space and computation time (in the SVD pro-
cess a[N×N] matrix has to be stored). This last argument can make the SVD approach
unpractical for dimensionality reduction problems where the numberN of objects is very
large.

In the following chapters, initializations of codebook or configuration were computed using
the SVD approach for the reasons advocated here above. The computational details of both
approaches are given in the following two sections.

2.1 Spectral decomposition of the correlation matrix

The spectral decomposition (or eigendecomposition) of the correlation matrix is performed
through a tridiagonalization of the correlation matrix followed by a QL algorithm. The com-
plete process of reduction of the dimensionality of a set ofN data points (D-dimensional) form-
ing a [N×D] matrix X to a set ofN points (d-dimensional) through spectral decomposition of
the correlation matrix consists of the following steps:

1. Compute the correlation matrixS:

(a) Center the data points at the origin (ie. remove column means out ofX):
X = X− 1

N (1 ·1T) ·X, where1 is aN-dimensional vector of ones,2

(b) Normalize the column standard deviations to get standardized matrixX STD:
XSTD = X ·D−1/2, whereD = diag(XT ·X) is the diagonal matrix of variances,

(c) The correlation matrixS is the inner product of matrixXSTD by itself:
S= XT

STD ·XSTD, (S is a [N×N] matrix).

2. Compute the spectral decomposition of matrixS in the following two steps:

(a) Transform the symmetric matrixS to a tridiagonal matrixST through a reduction
process consisting ofN−2 Householder orthogonal transformations ofS:
ST = P(N−2) ·P(N−1) · . . . ·P(1) ·S·P(1) · . . . ·P(N), whereP(k) is orthogonal.

(b) Extract the eigenvalues and eigenvectors of the tridiagonal matrixST by the tridi-
agonal QL algorithm with implicit shifts:
ST = C ·D ·CT , whereD is a diagonal matrix containing the eigenvalues andC
contains the eigenvectors.

2The raised dot· denotes the matrix product and the superscriptT denotes the transpose of a matrix.

3. Sort the eigenvalues in decreasing order and reorder eigenvectors correspondingly.

4. The projections of the data points{Pi} (the rows ofX) on the firstd eigenvectors ofST

(Cd is made of the firstd columns ofC) give the matrixY of theN points,d-dimensional:
Y = X ·Cd.

2.2 Singular Value Decomposition of the data matrix

The Singular Value Decomposition (SVD) of a data matrix is performed here through its re-
duction to a bidiagonal form by Householder transformations followed by a QR algorithm to
find the eigenvalues [56]. The complete process of dimensionality reduction of a set ofN
data points (D-dimensional) forming a[N×D] matrix X to a set ofN points (d-dimensional)
through Singular Value Decomposition of the data matrix consists of the following steps:

1. Center the data points at the origin (i.e. remove the column means out ofX):
X = X− 1

N (1 ·1T) ·X, where1 is aN-dimensional vector of ones.

2. Compute the Singular Value Decomposition of matrixX in the following two steps:

(a) MatrixX is reduced to its upper bidiagonal formXB (i.e. XB[i, j] �= 0 only for j = i
or j = i+1) by Householder reflections from the left and the right:
XB = P(N) · . . . ·P(1) ·X ·Q(1) · . . . ·Q(N−2), whereP(k) andQ(k) are unitary matrices:

P(k) = I −2x(k)x(k)T
,k = 1, ..., D andQ(k) = I −2y(k)y(k)T

,k = 1, ..., D − 2.

(b) A variant of the QR algorithm is used to diagonalizeXB, computes the singular
value decomposition of the bidiagonal form and transforms it back to obtain:
XB = N ·Dα ·MT , whereN,M are orthogonal matrices andDα is diagonal.

3. The rankd approximation ofX (the firstd left singular vectors multiplied by the firstd
singular values) gives the matrixY of theN d-dimensional points coordinates:
Y = N(d) ·Dα(d),

2.3 Experimental comparison of the two approaches

Experimental mappings performed by spectral decomposition of the covariance matrix and Sin-
gular Value Decomposition of the data matrix were conducted in order to evaluate the practical
importance of the choice of the method. We employed the ready-to-use procedures from ”Nu-
merical Recipes in C” [110, §2.6, §11.2 and §11.3]. A first observation of our experiments
applying those two procedures on several data sets is that for the SVD approach, it is better
to use double precision in floating number machine representation whereas this makes almost
no difference in the case of spectral decomposition approach. The two algorithms were com-
pared from the viewpoints of first their numerical accuracy (that is how much of variance is
collected on the first principal axes) and second the displays of the resulting two-dimensional
configurations of points).

2.3.1 Variance on the principal axes

As it was mentioned above, Principal Components Analysis allows extracting by linear combi-
nations new features with maximum variances. A comparison of variances along principal axes
obtained by the two methods presented above will therefore be a good indicator of efficiency

for each method, the best one aggregating more variance in the first principal axes. Such an
experiment was performed on a real life data set that has variance quite uniformly distributed
among the features. The data used is from the Wisconsin Breast Cancer Database that was
obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg
[94], and is available at the UCI repository [16]. As this data set may be used in further ex-
periments in this work, this experiment is a first statistical analysis that gives useful insight
into the data. The data set is made of 699 cases (but only 463 single data), each belonging
to one of two classes (benign or malignant). Each case is a patient described by 9 nu-
merical attributes ranging from 1 to 10 (clump thickness, uniformity of cell size, uniformity
of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, nor-
mal nucleoli, mitoses). The 16 missing attribute values were estimated by attribute averaging
per class (see Chapter 6). Table 2.1 presents the distributions of variances among features for
the original data set (left part), for the data set obtained from PCA by Spectral Decomposition
(center part) and for the data set obtained from PCA by Singular Value Decomposition (right
part). It can be seen that the projections of the data on each of the 3 first Principal Components
computed by the SVD approach have larger variances (48.54; 5.10; 4.27) that the ones obtained
from the SpD (47.00; 4.21; 4.15). This shows that SVD better captures components with large
variance (combinations of features are more optimal), hence should it be preferred for reasons
of accuracy.

breast data set PCA by SpD PCA by SVD
Feature
index

Var. Percent
Eigen
value

Var. Percent
Singular

value
Var. Percent

6 13.10 18.62 % 5.89 47.00 66.80 % 184.20 48.54 68.99 %
8 9.31 13.23 % 0.78 4.21 5.99 % 59.69 5.10 7.24 %
2 9.30 13.22 % 0.54 4.15 5.90 % 54.61 4.27 6.06 %
3 8.82 12.54 % 0.46 3.53 5.02 % 23.67 3.13 4.44 %
4 8.14 11.57 % 0.38 2.86 4.06 % 46.74 2.74 3.89 %
1 7.92 11.25 % 0.31 2.75 3.91 % 43.77 2.42 3.43 %
7 5.94 8.44 % 0.29 2.74 3.90 % 41.10 1.77 2.52 %
5 4.90 6.96 % 0.26 2.27 3.23 % 33.36 1.59 2.26 %
9 2.94 4.17 % 0.09 0.84 1.19 % 35.21 0.80 1.14 %

Total 70.36 100.00 % 70.36 100.00 % 70.36 100.00 %

Table 2.1: Distributions of variance among features for thebreast data set.

2.3.2 Visual comparison of configurations

The two configurations of thebreast data set obtained previously from PCA using SpD and
SVD are shown in figure 2.1. We see that the configurations are different enough, even after
proper symmetry and rotation using, e.g. a Procrustes analysis (see §4.2.5). We conclude
that even small differences of variance distribution among the features lead to configurations
noticeably different. For this reason, we will use the SVD approach to compute PCA mappings
through the remaining of this work.

2.3.3 Limitations of PCA dimensionality reduction

The main limitation of dimensionality reduction by PCA is that it performs a linear mapping.
This means that this method is not suited to the visualization of data sets that are structured in a

benign
malignant

(a) Spectral Decomposition of correlation matrix.

benign
malignant

(b) Singular Value Decomposition of data matrix.

Figure 2.1: Visualization ofbreast data set by Principal Components Analysis.

non-linear way (that is data sets for which only a non-linear transformation will provide a dis-
play that reflects the data structure). A good illustration of this property is to map using PCA
an artificial data set structured specially in a non-linear way, for example the data set called
simplex5, constructed as follows: First generate the vertices of a simplex in a 5-dimensional
space, so that the inter-vertex distances are all equal to 1. Second generate 10 points in 6 Gaus-
sian distributions, each centered at one vertex, with null covariances and identical variances in
all dimensions equal to 0.3, in order to avoid overlap between the 6 clouds of points, labeled
by numbers from 1 to 6. This data set is intrinsically 5-dimensional and the symmetry of the
6 groupings positions cannot be rendered on a 2-dimensional display using a linear mapping
method such as PCA, whereas this is achieved by a non linear mapping method as MDS. The
two displays are shown in figure 2.2. Another known problem of PCA dimensionality reduc-

1

1
1 1

1

1

1

1

1

1

2

2

2

2

2

2

22

2

2
3

3
3

3

3

3
33

3

3

4

4
44 4

4

4

4 4
4

5

5

5
5

5
5

5

5

5

5

6

6

6

6

6

6 6

6 6
6

(a) Linear mapping using Principal Components Anal-
ysis: 3 groupings (n◦2,3 and 5) are mixed.

1

1
1

1
1

1 1

1

1

1

2

22

2

2

2

22

2

2

3

3

3
3

3

3

3

3

3

3

4

4

4

4

4
4

4
4

44

5

5
55

5 5

5

5
5

5

6

6

6

6

6

6

6

6

6

6

(b) Non linear mapping using Multidimensional Scal-
ing: the 6 groupings are well separated.

Figure 2.2: Linear and non linear mappings for the visualization ofsimplex5 data set.

tion is its sensitivity to the presence of outliers [112]. PCA is based on variances, and an outlier
is an isolated point that artificially increases the variance along a vector pointing towards it.
Taking an eigendecomposition of a robustly estimated covariance matrix can reduce this effect.

2.4 Neural network implementations of PCA

See section 3.1 on neural networks for a general presentation of this family of techniques.
Some neural networks have been explicitly designed to calculate Principal Components3. First
a single neuron was implemented by Oja [103] that used a modified Hebbian learning rule
(called “Oja’s rule”). The Hebbian learning rule expresses the idea that the connection strength
(or weight) between two neurons should be increased if the neurons are activated together,
taking a weight increase proportional to the product of the simultaneous neurons activations.
The Hebbian rule for one neuron is:

∆wi = αxiy (2.1)

whereα is the learning rate,xi is thei-th input to the single output neuron andy the output of
this neuron. The outputy sums the input in the usual fashion:

y =
d

∑
i=1

wixi (2.2)

Oja proposed the following modified Hebbian learning rule with weight decay4 :

∆wi = α(xiy− y2wi) (2.3)

Using this rule, the weight vectorw will converge to the first eigenvector. Then Oja [104]
proposed a neural network based on this principle, in order to perform a Principal Components
Analysis. By addingd−1 other neurons interacting between themselves we will find the other
PCs. The method called Oja’s subspace algorithm is based on the rule:

∆wi j = α(xiy j− yi

d

∑
k=1

wk jyk) (2.4)

The weights have been shown to converge to a basis of the Principal Subspace. This neural
network called the Principal Subspace Network (PSN) performs directly the mapping from
input data space to the subspace spanned by thed first Principal Components5, but without
indication on the principal components order. Other ANN implementations of PCA that does
not suffer from this problem have been proposed: Oja’s Weighted Subspace [105] and Sanger’s
Generalized Hebbian Algorithm [116].

3Two main motivations for ANN-based PCA are i) a neural network can easily learn a very large data set,
when the SVD approach can be unpractical for memory and time requirement reasons, and ii) a neural network
can learn on-line new data as they arrive.

4A major difficulty with the simple Hebb learning rule is that unless there is some limit on the growth of the
weights, the weights tend to grow without bound. Hence the role of the second part (the subtracted weight decay)
is to re-normalize the weight vector at each iteration.

5This is the most interesting feature of this neural network, because available Singular Value Decomposition
routines can handle quite large data matricesX.

Chapter 3

The neural networks approach:
Self-Organizing Maps

3.1 What are Artificial Neural Networks?

Artificial Neural Networks (ANN) are algorithms inspired by biology. The idea is to build
systems that reproduce the structure and functioning of the brain neurons. Research in this
field began in the 1940s, with the works of McCullogh and Pitts [97], followed by Hebb [66],
Rosenblatt [114] and Widrow and Hoff [141]. An Artificial Neural Network can be described
as a set of interconnected adaptive units generally organized in a layered structure [125]. A
description of such a structure is presented in figure 3.1.✬

✫

✩

✪

Input data ANN

Input layer
(D neurons)

Hidden layer(s)
(h neurons)

Output layer
(d neurons)

Connections
(weights W)

Output data

Figure 3.1: Generic structure of an Artificial Neural Network

The adaptation process (or learning) consist of a repeated presentation of some data to the

12

network so long as it adapts its own inner parameters (or weights W) to acquire a representation
of the data. The weight distribution over the network is the obtained data representation. From
a technical point of view, ANN consist of a great number of simple computing elements which
are connected to each other via unidirectional connections. A common case is to take a set
of perceptrons [114] as units and arrange them in layers, forming the multilayer perceptron
(MLP). From a statistical point of view, ANN are non-parametric models and make rather
weak assumption of the underlying structure of the data.

3.2 Artificial Neural Networks used for dimensionality re-
duction and data visualization

The variety of techniques invented in the field of ANN is very large, see [65] for a compre-
hensive review on existing ANN models. The particular algorithms listed above are among the
most popular ones presently used as dimensionality reduction tools.

3.2.1 Self-Organizing Maps (SOM)

SOM [78] is probably the most popular ANN algorithm used for data visualization and is
described in details in the next section 3.3.

3.2.2 Autoassociative Feedforward Neural Network (AFN)

Autoassociative Feedforward Neural Network [3] [84] allow dimensionality reduction by ex-
tracting the activity of d neurons of the internal “bottleneck” layer (containing fewer nodes than
input or output layers) in an MLP. The network is trained to reproduce the data space, i.e. train-
ing data are presented to both input and output layers while obtaining a reduced representation
in the inner layer.

3.2.3 Curvilinear Components Analysis (CCA)

Curvilinear Components Analysis [35] (by Vector Quantization and Projection) was proposed
as an improvement to the Kohonen’s self-organizing maps, the output space of which is con-
tinuous and takes automatically the relevant shape. CCA is a neural network structured in two
separate layers having D and d neurons respectively, and performing respectively vector quan-
tization (VQ) and non-linear projection (P) from D-dimensional space to d-dimensional space.
The weights of the first layer are the codebook of the vector quantizer. Vector quantization is
performed by competitive learning, to which a regularization term (CLR) is added because a
model of the distribution support is searched rather than the distribution itself. This regular-
ization allows unfolding of data structures, that is dimension reduction of data lying on lines,
surfaces or spheres embedded in higher-dimensional data spaces. The adaptation of the second
layer’s weights is based on a minimization of a Sammon like measure:

E =
1
2 ∑

i

N

∑
j �=i

(Di j−di j)2F(di j,λy) (3.1)

where F(di j,λy) is a bounded and monotonically decreasing weighting function allowing the
selection of the range of distances preferably preserved. This range is controlled by the radius
λy generally evolving with the time, but it can also be controlled by the user, allowing an

interactive selection of the scale at which the unfolding takes place. The minimization of E
is achieved by a simplified (and fast) gradient-like rule. The speed-up of the algorithm is due
to the fact that, at each iteration step, one point (randomly chosen) is pinned and all other
points move around without regard to interactions amongst them. In this way the complexity
of one minimization step scale (i.e. the number of inter-points distances to compute) only in
N instead of N2. This modification of the minimization process may explain the fact that CCA
is little prone to get trapped in local minima as reported in [34]. CCA is also claimed to allow
an inverse projection, that is from the 2-dimensional space to the D-dimensional space by a
permutation of the input and output layers.

3.2.4 NeuroScale

NeuroScale [129] is a feed-forward neural network designed to effect a topographic, structure
preserving, dimension-reducing transformation, with an additional facility to incorporate dif-
ferent degrees of associated subjective information. The implementation of this topographic
transformation by a neural network is the following: A Radial Basis Function (RBF) neural
network is utilized to predict the coordinates of the data points in the transformed data space.
The weights of the network are adjusted in order to minimize the following error measure that
embodies the topographic principle:

E =
N

∑
i< j

(Di j−di j)2 (3.2)

where the Di j are inter-point Euclidean distances in the data space and di j are the corresponding
distances in the mapping space. If xi = (x1, ...,xD) is an input vector mapped onto point yi =
(y1, ...,yd), we have Di j = ||xi−x j|| and di j = ||yi−y j||. The points {yi} are generated by the
RBF, given the data points {xi} as input. That is, if h is the number of neurons of the hidden
layer and {Φi} are the basis functions, yi = ∑h

j=1 wi jΦ j(||xi−µ j||) = f (xi,W), where f (·,W)
is the nonlinear transformation effected by the RBF with parameters (weights) W. The error
function (3.2) is expressed then as a function of the weights W:

E =
N

∑
i< j

(||xi−x j||− || f (xi,W)− f (x j,W)||)2 (3.3)

that can be differentiated with respect to W. Weight derivatives are calculated for pairs of
input patterns and the network is trained for all the pairs of input patterns via any nonlinear
optimization algorithm1. This scheme can include additional subjective knowledge concerning
dissimilarity of each pair of data points, denoted si j (this knowledge can be for instance class
information for generating data spaces that separate classes). This subjective knowledge is
incorporated to the algorithm by replacing in equation (3.2) the data space distance Di j with

δi j = (1−α) ·Di j +αsi j, α ∈ [0,1] (3.4)

where parameter α allows to control the degree of interpolation between purely geometric
relationships and subjective knowledge.

1This training scheme is not supervised because we don’ t know a priori the positions y i, nor unsupervised
because we know the relative distance for each pair of data, so it is called relative supervision.

3.2.5 Other neural network implementations of multidimensional scaling

The two methods previously described have the following common feature: they are imple-
mented as neural networks, with a learning rule “borrowed” from multidimensional scaling
in order to obtain topographic mappings. This idea was presented in other papers as Neu-
ral Network implementations of MDS [136] or as Neural Network for Sammon’s projection
(SAMANN) [95] that implements an unsupervised backpropagation learning algorithm to train
a multilayer feedforward neural network.

3.2.6 The Generative Topographic Mapping (GTM)

It must be noted first that this model developed in a statistical framework is not an artificial
neural network, nevertheless it is described here because of its strong relation to the SOM
model. The Generative Topographic Mapping [14] [123] is a probabilistic model that has been
proposed as an alternative to the self-organizing maps in order to overcome the main difficulties
encountered in the SOM model (see section 3.3.2). The GTM model is based on the assumption
that the D observed variables are generated by L hidden or latent variables. The GTM defines
a generative non-linear parametric mapping y(x,W) (W is a matrix of weights) from an L-
dimensional latent or visualization space (x ∈ ℜ L) to the D-dimensional data space (y ∈ ℜ D)
defined as

y(x,W) = WΦ(x) (3.5)

where the elements of Φ(x) consist of M fixed Gaussian basis functions. The probability dis-
tribution p(x) over the latent space is defined in the form of a regular grid of K delta functions
centered at the latent points {xk} as

p(x) =
1
K

K

∑
k

δ(x−xk) (3.6)

since we do not expect the data to be confined exactly to the curved latent space, p(x) is
convolved with an isotropic Gaussian noise distribution given by

p(t|x,W,β) = N (y(x,W),β) (3.7)

where t is a point in the data space. Parameters W and β determine the mapping and they are
estimated by a maximization of the log likelihood function �:

� =
N

∑
n

log

(
1
K

K

∑
k

p(tn|xk,W,β)

)
(3.8)

through an Expectation-Maximization (EM) [36] procedure. In this way, the mapped latent
distribution fits the observed data distribution. If the relationship between latent and observed
variables is linear, this approach is known as factor analysis [91]. Using a non-linear mapping
function, the distribution in the latent space will be non-linearly embedded in the data space
on a curved manifold. The mapping is finally obtained using Bayes’ theorem in conjunction
with the prior distribution over latent variable p(x) to compute the corresponding posterior
distribution in latent space for any given point t in data space as

p(xk|t) =
p(t|xk,W�,β�)p(xk)

∑k′ p(t|xk′,W�,β�)p(xk′)
(3.9)

3.3 Kohonen’s Self-Organizing Maps

3.3.1 Introduction

The algorithm called “Self-Organizing Map” introduced in 1981 by T. Kohonen [78] has been
widely studied and applied over the past two decades (a list of more than 3000 references
about SOM is given in [74]). SOM was originally devised by Kohonen to model a biological
phenomena called retinotopy, a process of self-organization of the neural links between the
visual cortex and the retina cells. The SOM is recognized as a gross simplification of this
retinotopic process, which occurs in the brain. The SOM is a particular type of ANN that
combines multivariate data visualization and clustering capabilities. One particularity of SOM
is that the output layer of neurons is a two-dimensional array (map) that is directly used for data
visualization purposes. A second feature of SOM is that the learning process is unsupervised
or self-organized. This means that class information about the data is not used during the
learning process, whether such information is available or not. The SOM neural network takes
as input a set of high-dimensional sample vectors (labeled or not) and gives as output an array
of codebook vectors, usually in one, two or three dimensions for visualization purposes. The
basic two-layered structure of a SOM neural network is shown in figure 3.2. After training, the
codebook can be used to display the training data or new data in a number of ways, as will be
shown in section 3.3.4.

✬

✫

✩

✪

Data space
(e.g. D = 3)

x1

x2

x3

Data points

Kohonen space
(e.g. d = 2)

Input layer
(D nodes)

x1

x2

x3

Output layer
(array of nodes)

neighborhood
connections
weights
connections

node niweight
vector mi

Figure 3.2: Data visualization using Self-Organizing Map Neural Network

Learning Vector Quantization

From the algorithmic point of view, SOM can be seen as an unsupervised version of a supervised-
learning algorithm called Learning Vector Quantization (LVQ) [79] that was developed as a
statistical classification tool. The idea of LVQ is that in a classification system (a classifier)
based on the nearest-neighbor rule, a drastic gain of computation speed can be obtained re-
ducing the number of vectors that represent each class. This reduction of the number of data
vectors is a clustering. A set of reference vectors, also called codebook vectors, is adapted
through an iterative process to the data according to a competitive learning rule. Competitive
learning means that only the closest codebook vector (called winning or Best Matching Unit –
BMU) is adapted (i.e. moved towards the presented data) at each iteration. This resembles a
competition of the neurons to be activated. The training vectors as well as the reference vec-
tors are categorical, i.e. labeled with a class name, and the training is qualified as supervised
because it uses the class information of the training vectors. Let us note x(t) the training vector
presented at iteration t, {mi} the set of codebook vectors and mc(t) the nearest codebook vector
to x(t). Vector mc is obtained from the equation:

‖x(t)−mc(t)‖= min j‖x(t)−m j(t)‖ (3.10)

and is adapted according to the learning rule:

mc(t +1) =
{

mc(t)+α(t) · [x(t)−mc(t)] if C(x) = C(mc),
mc(t)−α(t) · [x(t)−mc(t)] if C(x) �= C(mc).

(3.11)

where α(t) ∈ [0,1] is a decreasing function of t called learning rate and C(·) is a function
returning the class of a vector. It must be noted that only one unit (the BMU mc) is adapted at
each iteration, the codebook vectors of the remaining units are left unchanged. The result of
the process is an approximation of the data probability density function by the codebook. After
such a training of the codebook, a new vector y is classified according to the nearest neighbor
rule: y is classified into class Ck if the nearest codebook vector to y is mc, where C(mc) = Ck.

Self-Organizing Maps principle

While in LVQ each unit is updated independently from the others, in SOM the unit interact
in lateral directions because the codebook vectors are organized in a two-dimensional array
and the learning rule has additional neighborhood constraints. The neighborhood constraints in
SOM are that in the competitive learning rule, not only the winning unit is adapted, but also the
units located in its neighborhood on the array. The underlying idea is that “Global order can
arise from local interactions.” A neighborhood function hci that can be of type "bubble"
or "gaussian"2 is included into the LVQ learning rule (3.11), giving the following SOM
learning rule applied to all codebook vectors:

mi(t +1) = mi(t)+hci(t) · [x(t)−mi(t)] (3.12)

* If "bubble" neighborhood: hci(t) =
{

α(t) if ‖mc−mi‖ ≤ r(t)
0 if ‖mc−mi‖> r(t) (3.13a)

* If "gaussian" neighborhood: hci(t) = α(t) · e
−‖mc−mi‖

2σ2(t) (3.13b)
2In the "bubble" type, only one neuron is activated at each iteration, this is called winner-takes-all (WTA),

whereas the "gaussian" type applies the winner-takes-most principle.

Only the neurons within the neighborhood hci(t) around mc are moved near to x(t). r(t) and
σ(t) are called neighborhood radiuses and are monotonically decreasing functions of t. This
leads at the same time to a continuity of the codebook vectors (they are topologically ordered)
over the array of units and to an approximation of the input data probability density function.
These two features ensure that the resulting two-dimensional representation of the data tends to
preserve the topography of the training data, which means that similar data will be mapped on
neighboring areas of the map. From a statistical point of view, Kohonen self-organizing maps
are discrete approximations to principal curves and surfaces.

3.3.2 Problems and limitations of the model

Varying areal magnification factors

If some areas of the data space are described by more data points than in the remaining data
space, the corresponding area on the map will be large due to the tendency of the algorithm
to minimize the quantization error functional. This effect is called the locally varying magni-
fication factor [7]. The fact that the presentation of many similar data points to the network
enhances their representation on the same area of the map can be interpreted as a clustering
capacity of the algorithm. This clustering capacity cannot be practically exploited in classifi-
cation tasks because of the simultaneous magnifications of different such areas on the map that
reduce to a minimum the inter-cluster areas. This property is not desirable in data visualization
tasks because local topology preservation then surpasses global topology preservation. The
magnification effect has been illustrated in figure 3.3, where a SOM map was trained on the
one hand using the original iris3 data set 3.3(a), on the other hand using an augmented iris
data set 3.3(b) in which vectors belonging to class versicolor occur twice. The area on
the map coding class versicolor is trained using two times more training vectors and is hence
more precisely coded, but this results in its magnification in figure 3.3(b) because the number
of training vectors for this area is larger than in the case of the original data set, and not be-
cause the corresponding area in the data space is really larger. The same two data sets were
also mapped using MDS, see §4.2.1 for a comparison.

(a) Map trained on the original iris data set (b) Map trained on the augmented iris data set

Figure 3.3: The areal magnification effect: iris data set displayed on SOM maps (“hexago-
nal” topology, 40× 25 nodes). The area coding class versicolor (blue dots) is magnified
in 3.3(b).

3A famous data set widely used in the pattern recognition literature [47]. It contains three classes of 50
instances each, where each class refers to a type of iris plant (versicolor, setosa and virginica). The data is 4
dimensional, and consists of measurements of sepal and petal lengths.

Sensitivity to the initialization of the codebook

The final mapping of a data set strongly depends on the initialization of the codebook. If we
want to get a good mapping, it is advised to train the codebook several times with different
initial configurations and then to keep the “best” mapping. How much a given mapping is bet-
ter than another one can be measured by the topology preservation measures that are presented
in §3.3.3. In order to show the effect of a wrongly initialized map, we trained several times
after random initialization the codebook of a square map with 20×20 neurons on the follow-
ing data set: a number of points were randomly picked (under uniform distribution) from a
2-dimensional triangular space. The trained codebook was then displayed on the triangular
surface to show how well it fits this space. It can be seen in figure 3.4 that the left map was
initialized in a proper way which results in a quite uniform filling4 of the data space by the
map, whereas the right map wasn’ t well initialized and ended up “ twisted” .

Figure 3.4: Codebook initialization: A square SOM network trained on the triangle data
set (and displayed on the triangle surface) after two different random initializations.

Distortions connected with the map shape

Because the data tend to fill as much as possible the mapping space, the level of topology
preservation highly depends on the fitting of the map shape to the data manifold shape. For
instance an elongated manifold projected on a square map will be elongated in the direction
perpendicular to its principal axis, tending to fit (and fill) the square. For this reason Kohonen
suggests to first visualize the data using Sammon’s mapping to get an idea of the rough data
manifold shape, and then design the network whose dimensions fit the data manifold. It has
been also proposed to adapt the size of the map (by insertion or pruning of rows or columns
of neurons) during learning in order to minimize distortion [9]. In order to visualize how the
SOM array shape influences the resulting mapping, a sphere data set was mapped on a square
SOM map. This artificially generated data consisted of 86 points on the surface of a sphere with
radius 1 – 12 points on each of 7 equally spaced parallels, and the 2 poles. As shown in figure
3.5, this leads to distortions, especially on the corners of the array, due to shape differences
between data and mapping spaces. Another effect of the map shape is the so called border
effect, meaning that neurons at the border of the map are attracted towards the center (This can
be seen in figure 3.4). To avoid these problems, Martinetz and Schulten proposed an algorithm
called Neural Gas [96] close to Kohonen’s SOM, with the difference that the neurons of the

4The filling is not uniform in fact because we try to fit a square map into a triangle.

output layer are not arranged in a rectangular array of fixed shape, but they are rearranged at
each iteration in a decreasing order of their distance to the currently presented training vector.
Fritzke developed [51] a self-organizing network called Growing Cell Structure that adapts the
number of neurons and its shape during learning (by adding or pruning only one neuron at a
time) in order to better represent the data manifold.

(a) Sammon’s mapping (b) 30×30 nodes SOM (c) 40×20 nodes rectangular SOM

Figure 3.5: Distortions due to the map shape: A sphere mapped using two different SOM maps
is visually much more distorted than using Sammon’s mapping. The sphere is unfolded by
SOM in a similar manner to the mappings obtained by CCA (see §3.2.3).

Discretization of the output space

The fact that the mapping is performed from a continuous data space onto a discretized space
(the array of neurons of the output layer) is another restriction to a faithful representation of the
data topography. An augmentation of the number of nodes on the map reduces of course this
problem, at the cost of an increase of the training duration. This problem is especially crucial
when the map is used to plot new data vectors in order to see its exact position on the map
with respect to training data vectors. The discretized array of nodes offers a limited number
of places where to plot the new point. In order to face this lack of continuity, Göppert et al.
proposed [59] three techniques based on some interpolation in the output space:

• Interpolation parameters by projection This method consists of an orthogonal pro-
jection of the error vector (from the actual approximation to the exact input) onto the
distance vector from the actual approximation to the next winner. For a given input vec-
tor X, w0 denotes the index of the so called first winner, that is the closest codebook
vector: |X−Ww0|= mini|X−Wi|, and {wi, i = 1, ...,k} denote the indices of the further
winning neurons that are the k topological neighbors of Ww0 (on the grid of the output
space). The following iterative procedure is repeated for all winners (i = 1, ...,k):

X̃0 = W(in)
w0 ; Ỹ0 = W(out)

w0 (3.14a)

αi =
(X− X̃i−1)T (W(in)

w j − X̃i−1)

(W(in)
w j − X̃i−1)T (W(in)

w j − X̃i−1)
(3.14b)

X̃i = X̃i−1 +αi

(
W(in)

w j − X̃i−1

)
(3.14c)

Ỹ(out)
i = Ỹ(out)

i−1 +αi

(
W(out)

w j − Ỹi−1

)
(3.14d)

• Interpolation parameters by matrix inversion In this method, we define a set of dis-
tance vectors {l(in)

i } that form a local coordinate system L(in):

l(in)
i = W(in)

wi −W(in)
w0 i = 1, ...,k (3.15a)

Xl = X−W(in)
w0 (3.15b)

L(in) = [l(in)
1 l(in)

2 · · · l(in)
k] (3.15c)

The local system in the output space (L(out)) is calculated accordingly. The base direc-
tions of the coordinate system are supposed to be linearly independent, but not orthogo-
nal, so affine coordinates are obtained by the pseudo-inverse matrix T:

T = (L(in)T L(in))−1L(in)T (3.16a)

αi =
D

∑
j=1

Ti jx
l
j ; α0 = 1−

k

∑
i=1

αi i = 1, ...,k (3.16b)

Y(out) = W(out)
w0 +Yl(out) =

k

∑
i=0

αiW
(out)
wi (3.16c)

• Interpolation parameters by iterations The first interpolation method does not lead to
an optimal result because the distances vectors are not orthogonal. The second method
achieves better results, but it is highly sensitive to noise. In this method, the iterative
update rule is defined by the minimization of an error function by gradient descent:

E =
1
2

D

∑
j=1

(x(in)
j − x̃(in)

j)2 =
1
2
[Xl(in)− X̃l(in)]2 (3.17a)

∆αi = γ
(Xl(in)− X̃l(in))T l(in)

wi

l(in)T
wi l(in)

wi

i ∈ 1, ...,k (3.17b)

This procedure is inspired by the Delta rule [141].

Classification and clustering performance

SOM is an algorithm that performs a the same time vector quantization or clustering and visu-
alization of high-dimensional data. Besides visualization of high-dimensional data, SOM has
been applied to classification tasks. A codebook trained on categorical data constitutes a clas-
sifier by the use of the nearest neighbor rule applied to the codebook. It has been reported in
[83] that SOM projection has a performance that is comparable or better than Sammon’s map-
ping for the purpose of classification of clustered data. Many different classifiers have been
compared on classical classification data sets in the framework of the StatLog project [98].
Compared to techniques that are only devoted to classification such as the k-Nearest Neighbors
(KNN), Linear Discriminant Analysis (LDA) or other neural networks, the performances of
SOM as a classifier are reported as poor. An attractive feature of SOM (that partly accounts
for its popularity) is that the network learns the data in an unsupervised manner. The algorithm
can therefore be used as a clustering pre-processing in unsupervised segmentation of textured
images (to be used for example in medical image databases). The experiments we conducted in
this direction [100] brought us to face the problem of the SOM map “segmentation” , because
SOM performs an unsupervised clustering but does not provide class definition. For this rea-
son, SOM cannot be used alone for automatic unsupervised classification. SOM was not found
to be a more efficient clustering tool than classical statistical clustering techniques such as the
k–means.

Algorithmic aspects

Although one-dimensional Kohonen maps have been analyzed in some details little is known
about the self-organization process in two or three dimensions [80]. The main problem is the
lack of quantitative measure to determine what exactly “ the good map” is. The problems listed
here are quoted after [123]. The training algorithm does not optimize an objective function.5

There is no general guarantee the training algorithm will converge. Convergence has been
proven only under restricted conditions, e.g. the one-dimensional case [48] [128]. There is
no theoretical framework based on which appropriate values for the model parameters can be
chosen, e.g. initial value for the learning rate and width of the neighborhood functions, and
subsequent rate of decrease and shrinkage, respectively. Some rules were provided in this
matter in [99] and are based on an stochastic approximation theory approach. Those problems
make difficult the use of the algorithm, requiring from the user knowledge about appropriate
parameters that should be used.

3.3.3 Data topography preservation and its measures

In order to clarify the purpose of the measures presented in this section, we will first introduce
the following two definitions from the McGrawHill Encyclopedia of Science and Technology,
vol.13, pp.667-683:

• Topology “The study of topological spaces and continuous maps” . The important point
is the continuity of the data space in neighborhoods based on a metric.

• Topographic surveying and mapping “The measurement of surface features and con-
figuration of an area or region, and the graphic expression of those features” . The purpose
here is to represent a structure or configuration of objects.

In the remain of this text, we are interested in the relative positions of points in the data space
revealing the structure of data manifolds, so we want to measure the preservation of its topogra-
phy, but the terms topology and topography preservation are used quite interchangeably. Data
represented in a D-dimensional space need not be really D-dimensional, e.g. points picked-up
from a plane that is embedded in a 3-dimensional space. The effective dimensionality of a
data manifold is denoted here Di and called intrinsic dimensionality. Di is necessarily smaller
than the number of non zero eigenvalues (i.e. the rank of the data matrix X, and its value can
be estimated in a number of different manners [34] [122], (the number of the first eigenvalues
that are significantly larger than the remaining ones is a good first guess). The embedding of
a D-dimensional manifold in a d-dimensional map space (d � D) leads to more or less local
distortions of data topography. These data topography distortions are related to the reduction
of dimensionality, and they will be more important when the difference Di− d increase. The
measures presented in this section were designed to provide numerical indicators of how much
a given mapping leads to a better data topography preservation than another mapping. Such
indicators allow to compare different mappings obtained by different SOM networks and to
retain the best one. The best mapping is the one for which a measure of the topology distortion
induced by the mapping is the smallest. The main difficulty to design such a measure is that
SOM output space is not a continuous space as the input space is, but an array of nodes.

5It has been proved [45] that such an objective function cannot exist in the general case of a continuous distribu-
tion function of the input data. But in the case of finite pattern manifolds (that is in most of practical applications),
the input data set is finite and the SOM does have a (local) objective function which is the reconstruction error
expressed by equation (3.19) [73] [113]. SOM learning rule corresponds to a gradient descent step towards a
stochastic approximation of the minimum of equation (3.19).

SOM learning quality measures

Given that very different learning processes can be defined starting with different initial code-
book vectors, and applying different learning parameters, it can be useful to define an indicator
of the quality of a given SOM training round. Such an indicator, used by Kohonen, is the
average square quantization error defined as

q1
e =

1
T

T

∑
t=1
‖xt−mc‖ (3.18)

or the average distortion measure

q2
e =

1
T

T

∑
t=1

N

∑
i=1

hci‖xt−mi‖2 (3.19)

where hci is the neighborhood function defined in (3.12), N is the number of nodes in the
array and T is the number of training vectors. In fact these measures only reflect how well the
codebook matches the training data, measuring the quality of the learning process but giving
no indication about the data topography preservation of the mapping.

SOM mapping quality measures

It is not obvious to define precisely the intuitive notion that a mapping preserves the “ internal
structure” of the data in one space in another space. Two possible choices are to say that the
mapping must preserve some distance measures, or that the mapping must preserve distances
orderings. Bauer and Pawelzik defined [8] a topographic product as a measure of preservation
or violation of neighborhood relations as follows:

P =
1

N(N−1)

N

∑
j=1

N−1

∑
k=1

log(P3(j,k)) (3.20a)

P3(j,k) =

(
k

∏
l=1

dV (wj,wnA
l (j))

dV (wj,wnV
l (j))

dA(j,nA
l (j))

dA(j,nV
l (j))

) 1
2k

(3.20b)

P is an average of P3(j,k) over all neighborhood orders k and neurons j, nA
k (j) denote the k-th

nearest neighbor of node j, with the distances dA(j,k) measured in the output space and in
the same way nV

k (j) denote the k-th nearest neighbor of node j, with the distances dV (wj,wk)
measured in the input space. A vanishing value of P indicates a perfect neighborhood preser-
vation; negative (positive) values indicate a too small (too large) output space dimensionality.
Another approach to data topography preservation measure for a SOM mapping was proposed
in [83] and consists in computing Sammon error measure after having previously defined some
distances in the input and output spaces. Bezdek and Pal argue [11] that these methods do
not measure topology preservation directly, and they introduce a more general measure called
Metric Topology Preserving index as:

ρSp = 1−
6

T
∑

k=1
(r�(k)− r(k))2

T 3−T
(3.21)

where index k runs over the T = n(n− 1)/2 distances and r�(k) (respectively. r(k)) is the
rank of distance d�(k) (resp. d(k)) in the input (resp. output) space. ρSp is a Spearman’s
rank correlation coefficient indicating distances order preservation. [58] gives a summary of
different definitions of what a “perfectly neighborhood preserving” map is and presents some
of their properties.

Information preservation measure

The following information loss measure can be defined [39]:

A(Y) =

N
∑

i> j
(di j(Y)−δi j)2

N
∑

i> j
di j(Y)2 +

N
∑

i> j
δ2

i j

(3.22)

where A(Y) ∈ [0,1] indicates how much of the information contained in the data inter-points
distances is preserved by the mapping.

3.3.4 Applications of SOM to multivariate data visualization

Many different ways to use SOM as a data visualization tool have been proposed, depending
on the type of data to visualize and on the purpose of the visualization. The methods listed here
below use the capacity of the SOM mapping to display the topographic relationships of the
data vectors used to train the map. See [137] for a more complete review of SOM-based data
visualization methods. Other techniques allow for example to see the evolution of temporal
data in the form of a trajectory on the trained map.

• A first simple solution is to put the label of the learning individuals at the place of their
BMU, providing a display of the training data vectors as shown in figure 3.3. This visual-
ization technique can be applied if the data are class-labeled and their number is smaller
than the number of neurons on the map. Even then the main limitation is that very often
several data vectors fall on the same map neuron, hence a problem to visualize such data.

• In the case where data are not labeled, it is possible to mark the place of each unit with
the number of training data vectors for which this unit is the BMU, marking the BMU
whether with the number itself, or using a gray-level color proportional to this number.
This gives a map containing frequency information (a kind of 2-dimensional histogram),
hence revealing clusters. But those representations do not show the local distances be-
tween the adjacent units, giving no idea of the real data space distances existing between
the possible clusters on the map.

• Several authors [80], [83], [26] chose to put into light the clusters using shades in a gray
scale depending on the mean distance in the codebook vectors space of a unit to its di-
rect neighbors. One such method is the unified distance matrix (U-matrix) method [135]
[71], in which the gray value of each pixel is determined by the maximum distance in
the data space of the corresponding unit to its four neighbors in the network (smaller
distances are white whereas larger distances are black). Map areas where the codebook
vectors are significantly varying code larger parts of the data space than areas with more
constant codebook vectors, thereby the U-matrix gives an estimation of areal magnifica-
tion factors. An example of U-matrix display (obtained using the program umat of the
SOM_PAK package [81] distribution) is given in figure 3.6(a).

• Another possibility to visualize categorical data is to color the map by class clusters. This
can be done by marking each unit of the map with a colored disc, each color correspond-
ing to the one class of the training data for which this unit is BMU. In this way each
class is represented by a colored area on the map, as shown in figure 3.6(b). Here again
there can be conflicting data, i.e. data from different classes for which the same unit is

BMU. Additionally, the class color labelling each map unit can be tuned or “contrasted”
proportionally to the average quantization error of the unit, with null saturation (white
color) on the unit with the largest quantization error and fully saturated color on the unit
with smallest quantization error. Another possibility is to let the label radius instead of
color saturation depend on quantization error. In this way, information concerning the
confidence we can have in the class position and shape is reported on the map by colors
intensities, as can be seen in figure 3.6(c).

• The WEBSOM is an extension of SOM that is widely used for data visualization of eco-
nomical analyses [33] [73], as well as in data mining of texts or Knowledge Discovery
in Databases (KDD) [69]. The idea of the WEBSOM method lies in its two-level archi-
tecture, where the upper level map takes in input the histogram of the lower level map.
In the case of data mining of texts, a category map of words (lower level) is built on the
basis of appearances of words in a thesaurus, giving words-meaning proximities that are
used to build a document map (upper level). The visualized document map provides a
general view of the document collection.

(a) U-matrix representation of the codebook, larger differences between codebook vectors are marked
with darker dots

(b) Each map unit is marked by the class color of its nearest training vector,

(c) As on figure above 3.6(b) with quantization error based contrast added.

Figure 3.6: Different visualizations of iris data set trained on a SOM map with “hexagonal”
neighborhood of 40×25 nodes.

Chapter 4

The statistical approach:
Multidimensional scaling

4.1 Introduction

4.1.1 Narrow and broad sense definitions of multidimensional scaling

The term multidimensional scaling (MDS) is commonly employed with two quite different
meanings [32]:

• In the first meaning (the narrow sense), MDS is a family of the techniques aimed at
representing some dissimilarity data in a low dimensional space. A definition close to
this one of multidimensional scaling is given in [27, p. 1]:

Suppose a set of N objects is under consideration and between each pair of
objects (i, j) there is a measurement δi j of the “dissimilarity” between the two
objects. A narrow definition of MDS is the search for low dimensional space,
usually Euclidean, in which points in the space represent the objects, one point
representing one object, and such that the distances between the points in the
space {di j} match as well as possible the original dissimilarities {δi j}.

• In the second meaning (the broad sense), MDS is said to cover any technique which
produces a graphical representation of objects from multivariate data. Such a definition
includes various forms of cluster analysis or statistical multivariate analysis methods,
such as PCA or Correspondence Analysis (CA) [10] [63].

A wider definition of multidimensional scaling can subsume several tech-
niques of multivariate data analysis. At the extreme it covers any technique
which produces a graphical representation of objects from multivariate data.
[27, pp. 1-2]

Ripley follows the same approach in his book [112, pp. 305-311] defining MDS as
a family of techniques including all the methods producing a two-dimensional display
of objects on the basis of their similarities or distances, such as Sammon’s Non Linear
Mapping [115] or Principal Components Analysis.

In the following we will focus on MDS in the narrow sense, and on the simplest case of one-
mode two-way data. This terminology means that the observed objects are known only by one
dissimilarity measurement (one-mode) per couple of objects (two-way). Data dimensionality
reduction using MDS consists therefore in the following two steps:

27

STEP 1: Compute inter objects distances in the data space D,

STEP 2: Input those distances as dissimilarities to the MDS algorithm.

The choice for the distance measure is usually the Euclidean distance (and this choice was
made in the entirety of this work). This choice is not the only one possible, for example higher
order Minkowski distances (with k > 2) or Malahanobis distances may be more appropriate in
some cases. Dissimilarities involving more than two objects could also be considered (triplets,
etc.). The choice of Euclidean distance was made here for the sake of simplicity, but in real
applications it should be driven by the nature of the data. Particularly in the case where some
of the data attributes are not numerical and continuous, but just binary or symbolic, a carefully
taylored distance function should be envisaged.

4.1.2 Overview of Multidimensional Scaling techniques

Origins of the method

The collection of methods referred to as multidimensional scaling can be regarded as a nonlin-
ear graphical technique. These methods were originally designed to deal with data collected
directly in the form of inter-point distances (or distances-like quantities) between pairs of ob-
jects. Multidimensional scaling (MDS) is a set of data analysis techniques that display the
structure of distance-like data as a geometrical picture. MDS has its origins in psychometrics,
where it was proposed to help understand people’s judgements of the similarity of members of
a set of objects, e.g. perceived distances between colors, olfaction substances, etc. The first
computer programs implementing MDS were developed by Shepard, Kruskal, Young, Guttman
and Lingoes, finding their foundations in the theoretical works of Torgerson [132] and Coombs
[25]. Torgerson proposed the first MDS method and coined the term. MDS has now become a
general data analysis technique used in a wide variety of fields.
The basic idea of MDS consists in finding through iterations a configuration of points represent-
ing as well as possible in a two-dimensional space a set of compared objects. If inter objects
similarity measures are not directly available, they can be obtained by computation of some
distance in the high dimensional space. It must be noted that geometric Euclidean distance
may not always reflect correctly the significant similarities between the data vectors (especially
when handling with nominal or ordinal discrete attributes, or with very different scalings). The
inter-point distances in the produced configuration should fit as well as possible the given sim-
ilarities (the different implementations of the fitting will be described later). Hence, the MDS
algorithm takes as input numerical values describing similarities between N points, arranged
in a [N ×N] similarity matrix, and produces an array of two-dimensional coordinates of the
representing points, the configuration matrix. Let us note that MDS do not put any hypothesis
or restriction on the data distribution, nor on the data space or its metric. The dissimilarities
are not necessarily distances, so they don’ t need to fulfill neither the triangle inequality of Eu-
clidean metrics dac ≤ dab + dbc nor the symmetrycity condition dab = dba. These properties
are to be related to the fact that MDS methods were initiated in psychometric studies, in which
dissimilarity measurements were given by subjects quantifying perceived closeness between
objects in rank scales (e.g. not at all, a few, very much, ...). The application of MDS only
requires the possibility to sort the dissimilarities in increasing or decreasing order.

Domains of application of MDS

A classical application of MDS is the re-construction of a map containing cities of a given
country on the basis of journey times between the cities. Other applications can be found in

[12], for example the construction of a space of persons working on a given job, of a space
of similar companies, or in studies of consumption goods. [22] list numerous scientific fields
in which MDS was applied, e.g. in marketing studies [37], in econometrics [93], in political
sciences [140] and in sociology [18], [28]. The methods was most successfully applied in
mathematical psychology, psychometrics and geography [130], [106], [55].

Particular approaches and recent developments

• Statistical inference:

– A statistical approach to MDS presented by Ramsay [111] consists in the modelling
of dissimilarities incorporating an error function, which leads onto inferential pro-
cedures. The idea is to let the observed dissimilarity between objects i and j, condi-
tioned on di j, have probability density function p(δi j|di j). It is assumed that these
conditioned observations are independent and identically distributed and hence the
log-likelihood is � = ∑r ∑s ln p(δi j|di j). The distances can be written in terms of
the coordinates of the points, d2

i j = (xi−x j)T (xi−x j), and hence the log-likelihood
can be minimized with respect to xi and any parameters of the probability density
function p. This gives the maximum likelihood estimates of the coordinates, x̂ i.
Two possible distributions for δi j|di j are the normal and log-normal. Another sim-
ilar maximum likelihood method as been proposed by Takane [127] for nonmetric
scaling.

– A different probabilistic approach is the one of Tsuchiya [133] in which not the
inter-points distances but the points coordinates are modelled by a normal distribu-
tion. Means and variances are estimated by a maximum likelihood procedure using
the EM algorithm.

• Global optimization methods:

– The tunneling method was applied by Groenen to perform global minimization of
the Stress [64]. The tunneling method alternates a local search step, in which a
local minimum is sought, with a tunneling step in which a different configuration
is sought with the same Stress as the previous local minimum. In this manner suc-
cessively better local minima are obtained. The crucial tunneling step is realized by
defining a tunneling function that will be zeroed by iterative majorization. Suppose
Y� is a local minimum configuration, the tunneling function is defined as:

τ(Y) = (S(Y)−S(Y�))2λ

1+
1

∑
i j
(di j(Y)−di j(Y�))2

 (4.1)

τ(Y) has zero points for configurations with Stress equal to S(Y�). The reader is
referred to Groenen for details on how these zero points can be found.

– In the case of unidimensional scaling, Pliner [109] proposed to face the problem of
the great number of local minima by smoothing the function to minimize. Although
not guaranteed inevitably to locate the global optimum, the smoothing technique
did so in all computational experiments where the global optimum was known. The
smoothing is achieved by integrating the Stress function as follows:

Sε(x) = (1/εn)
Z

D(x,ε)

S(y)dy (4.2)

where D(x,ε) is a cube in ℜ n with the center in x and a side ε. The integrated Stress
function Sε(x) is then minimized by a gradient descent method.

– Klock and Buhmann introduced a deterministic annealing algorithm for the SStress
function (see §4.4.1, equation (4.16)) and for Sammon mapping, derived in the
framework of maximum entropy estimation [77]. Deterministic annealing has been
designed to gather the advantages of both deterministic search techniques (such
as gradient descent) and stochastic simulated annealing, that is both rapidity and
efficiency. The idea is to replace the sampling of the Gibbs distribution of the
coordinates by exact or approximated calculations of the relevant expectation values
w.r.t. the Gibbs distribution.

4.1.3 Metric and non-metric MDS

In general the dissimilarities are obtained from experiments, e.g. a subject’s judgement of
similarity between each possible pairs from a given set of objects. In order to facilitate the
comparison of those dissimilarities with distances, the dissimilarities will first be transformed
so as to make them closer to distances, after which a configuration of points will be iteratively
sought so that the distances match as well as possible the transformed dissimilarities. If the
transformation applied to the dissimilarities preserves the metric properties of distances then it
is metric MDS, if not it is non-metric MDS. If the similarities (or dissimilarities) are propor-
tional to distances, the ensuing method is called metric MDS. If the dissimilarities are assumed
to be merely ordinal, it is non-metric MDS. In the case of metric MDS, an analytic expression
of the coordinates can be obtained by a procedure called classical scaling described below. In
the case of non-metric MDS, a configuration is sought so that distances {di j} between pairs of
points in the space match “as well as possible” the original dissimilarities {δi j}. This is usu-
ally performed through numerical minimization of a loss function (or goodness of fit function)
expressing how well the inter-point distances fit the given dissimilarities.

• Metric least-squares scaling is based on the minimization of a loss function with respect
to the coordinates of the d-dimensional points. Methods belonging to this category are
Sammon’s non-linear mapping (NLM) [115] (it is a metric scaling because dissimilarities
are Euclidean distances, but not linear because there does not exist a matrix transforming
the input points into the projected ones), ALSCAL [126], an alternating least squares
scaling method and SMACOF [31], a minimization method using a majorizing function.
ALSCAL and SMACOF are alternatives to the gradient methods for the minimization of
Stress.

• Nonmetric scaling is also least-squares, but only the rank order of the dissimilarities is
taken into account, hence the nonmetric character of the method.

4.1.4 Classical scaling

Torgerson [131] used a theorem proved by Young and Householder [142] which shows that
starting with a matrix of Euclidean distances, it is possible to determine the dimensionality
of the Euclidean space, and the coordinates of the points in this space for which inter-points
distances are exactly the given distances. Classical scaling procedure can be summarized as
follows:

1. Let the searched coordinates of N points in a D dimensional Euclidean space be given
by xi (i = 1, ...,N), where xi = (xi1, ...,xiD)T . Matrix X = [x1, ...,xN]T is the N ×D

coordinates matrix. The Euclidean distances {di j = (xi−xj)T (xi−xj)} are known. The
inner product of matrix X is denoted B = XXT . Find matrix B from the known distances
{di j} using Young-Householder process [142]:

(a) Define matrix A = [ai j] where ai j =−1
2di j

2,

(b) Deduce matrix B from B = HAH, where H = I− 1
N 11T is the centering matrix,

2. Recover the coordinates matrix X from B using the spectral decomposition of B:

(a) The inner product matrix B is expressed as B = XXT . The rank of B is r(B) =
r(XXT) = r(X) = D. B is symmetric, positive semi-definite and of rank D, and
hence has D non-negative eigenvalues and N−D zero eigenvalues.

(b) Matrix B is now written in terms of its spectral decomposition, B = VΛVT , where
Λ = diag(λ1,λ2, ...,λN) the diagonal matrix of eigenvalues {λ i} of B, and V =
[v1, ...,vN] the matrix of corresponding eigenvectors, normalized such that vT

i vi = 1,

(c) Because of the N−D zero eigenvalues, B can now be rewritten as
B = V1Λ1VT

1 , where Λ1 = diag(λ1,λ2, ...,λD) and V1 = [v1, ...,vD],
(d) Finally the coordinates matrix is given by

X = V1Λ
1
2
1 , where Λ

1
2
1 = diag(λ

1
2
1 , ...,λ

1
2
D)

If we extract the d (d < D) first principal coordinates of the spectral decomposition of B,
then we get a Principal Coordinates Analysis (PCO) [60]. 1 When dissimilarities are used
instead of Euclidean distances to define matrix A and then to produce matrix B, it is interest-
ing to ask under what circumstances B can give rise to a configuration of points in Euclidean
space. The answer is that if B is positive semi-definite of rank p, then a configuration in p
dimensional Euclidean space can be found [32]. In this case, classical scaling approximates the
set of dissimilarities with distances corresponding to a configuration of points in a Euclidean
space. To summarize, we can say that Classical Scaling (or Principal Co-ordinates Analysis) is
essentially an algebraic method of reconstructing point coordinates assuming that the dissimi-
larities are Euclidean distances. In dimensionality reduction tasks, the objects coordinates in D
dimensional space are given, so classical scaling (and Principal Coordinates Analysis – PCO)
amounts to a principal components analysis – PCA of the given coordinates.

4.2 Least Square Scaling algorithm

4.2.1 The Stress function

Least Square Scaling is based on the minimization of a function called loss function, badness
or goodness-of-fit function, error function or Stress function (we will use the last name in the
text below). This scalar measures how well the representation configuration matches the given
dissimilarities, the lower is its value, the better is the match. A general expression of the Stress
function is as follows:

S(Y) =
1
Fn

Nt

∑
i< j

wi j ·
(
δi j−di j(Y)

)2
(4.3)

1PCA is based on a spectral decomposition of a correlation matrix S = k ·X T ·X, whereas PCO is based on
a spectral decomposition of a scalar product matrix B = k ·X ·XT . It is well known that the matrices XT ·X and
X ·XT have the same non zero eigenvalues (but different eigenvectors) [57], so the two methods, based on linear
transformations, lead to similar results. Moreover the left and right singular vectors of X are particular choices of
the eigenvectors of X ·XT and XT ·X, respectively[49, p. 203].

where (i, j) are indices running over the mapped points, i < j means i = 1, ...,Nt−1 and j =
i+1, ...,Nt, δi j is a dissimilarity between objects Oi and O j that can be a given input data, or a
computed geometric distance separating objects Oi and O j in a high-dimensional data space D,
or a pseudo-distance (sometimes called “disparity”) derived from dissimilarities by a matching
of rank orders, di j is a computed distance separating points Pi and Pj in the low-dimensional
mapping space M, {wi j} are factors introduced to weight the dissimilarities {δi j} individually
and Fn is a normalization factor designed to make the Stress value independent to configuration
scalings (shrinking or stretching).

The question of how to choose the proper Stress function for a given task has been dis-
cussed in [88] and [43]. Depending on the Stress function chosen, the resulting configuration
will be such that some inter-point distances are better preserved than others, e.g. smaller or
larger distances. Following Duda and Hart [43, pp. 243-244], we can define three particular
Stress expressions derived from the general expression (4.3) using the following weights and
normalization factors:

wi j = 1 Fn =
Nt

∑
i< j

δi j
2 S1(Y) =

1
Nt

∑
i< j

δi j
2
·

Nt

∑
i< j

(
δi j−di j(Y)

)2 (4.4)

wi j =
1

δi j
Fn =

Nt

∑
i< j

δi j S2(Y) =
1

Nt

∑
i< j

δi j

·
Nt

∑
i< j

(
δi j−di j(Y)

)2

δi j
(4.5)

wi j =
1

δi j
2 Fn = Nt(Nt−1) S3(Y) =

1
Nt(Nt−1)

·
Nt

∑
i< j

(
δi j−di j(Y)

δi j

)2

(4.6)

In Stress expression of equation (4.4), each error δi j−di j is added directly to the sum regard-
less whether it is large or small, corresponding to an absolute error (this is Kruskal’s choice,
see §4.2.4, equation (4.13), with the minor difference that Fn sums over the output distances
{di j} instead of the dissimilarities). In equation (4.5), the squared errors are divided by δi j,
corresponding to an intermediate error (Sammon’s choice, see §4.2.3, equation (4.7)). Finally,
equation (4.6) corresponds to an relative error because each error |δi j − di j| is weighted by
1/δi j. Consequently the participation into the sum of larger dissimilarities δi j with respect to
smaller dissimilarities will be reduced in Stress S3 compared to the sum in S1. At the same
time, the weights of small dissimilarities will increase, leading finally to their better preserva-
tion through Stress minimization. This last observation is confirmed by experiments on real
data using the following diagrams.

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8

di
st

an
ce

s
d i

j

dissimilarities δij
(a) Shepard diagram: iris data set, Stress S1

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8

di
st

an
ce

s
d i

j

dissimilarities δij
(b) Shepard diagram: iris data set, Stress S3

0

1

2

3

4

5

6

0 1 2 3 4 5 6

di
st

an
ce

s
d i

j

dissimilarities δij
(c) Shepard diagram: cancer data set, Stress S1

0

1

2

3

4

5

6

0 1 2 3 4 5 6
di

st
an

ce
s

d i
j

dissimilarities δij
(d) Shepard diagram: cancer data set, Stress S3

(e) iris data set, S1 = 0.0011, 161 iterations (f) iris data set, S3 = 0.0132, 1177 iterations

(g) cancer data set, S1 = 0.061, 208 iterations (h) cancer data set, S3 = 0.084, 1054 iterations

Figure 4.1: MDS mappings (PCA initialization) obtained for Stress functions S1 and S3, and
the corresponding Shepard diagrams for iris and cancer data sets.

The scatter plot of the dissimilarities {δi j} versus the distances {di j}, called Shepard di-
agram in the MDS literature, shows which distances better reflect their given dissimilarities.
Points on this plot should roughly approach the diagonal line y = x. The closer the points to the
diagonal, the better is the preservation of the dissimilarities. Figures 4.1(a) to 4.1(d) represent
Shepard diagrams obtained after minimization of Stress functions S1 and S3 for two data sets :
iris 2 and cancer 3. We observe that minimizing Stress S1 leads to a better preservation of
larger distances than smaller ones for both data sets, because in figure 4.1(a) the diagonal line
is thiner in its top-right end, and the cloud is closer to the diagonal line in figure 4.1(c). On
the other hand, minimizing Stress S3 preserves worse larger distances and better smaller ones
than S1. This is confirmed for both data sets: In figure 4.1(b), the right end of the diagonal
cloud is thicker than in figure 4.1(a), and in figure 4.1(d), the left end of the cloud is closer to
the diagonal line than in figure 4.1(a) whereas the right part of the cloud is further from the
diagonal. We can notice that the smaller distances don’ t seem to be much better preserved by
S3 than by S1 for the iris data set, because the left end of the diagonal is still thick in figure
4.1(b). This is due to the fact that in iris data set there are much more smaller distances than
larger ones, as shown on histograms in figure 4.2.

0

200

400

600

800

1000

0 1 2 3 4 5 6 7

co
un

t

distances

0

1000

2000

3000

4000

0 1 2 3 4 5

co
un

t

distances

Figure 4.2: Histograms of inter-points distances di j for iris (left) and cancer (right).

As the Stress function is a sum over all the distances, it will be more difficult to change
significantly the distances that are in greater number in the histogram, so for iris data set
larger distances are much easier to change than smaller ones. Smaller distances are easier to
chance in cancer data set because they do not form a peak on the histogram. The resulting
configurations shown in figures 4.1(e) to 4.1(h) confirm this assessment: figures 4.1(e) and
4.1(f) are almost identical, whereas figures 4.1(g) and 4.1(h) differ importantly. Thus we put
forward the following conclusion: The choice of the Stress weights expressions can importantly
influence the resulting mapping, depending on the input data set, and more precisely on the
histogram of its inter-points distances. The differences should be more important for data sets
with histogram containing a peak in the middle than for data sets with histogram in which a
peak is on one extreme. This assertion, based on the two previous data sets, would need more
experimental verifying.

Another interesting effect of the difference between Stresses S1 and S3 can be observed
2The iris data set and its augmented version, used to illustrate the magnification effect in SOM (fig. 3.3),

were mapped using Stress functions S1 and S3 (with random moves within spheres of radius r = 0.01 for identical
data). Final configurations are almost identical, showing that the magnification effect does not occur in MDS
mappings.

3Breast cancer from the UCI repository, obtained from the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia.

during the mapping process that presents roughly two stages: at the beginning the configuration
quickly stabilises, then a fine tuning stage takes place. When a data set is mapped using S1, the
fine tuning stage consists in movings of individual points, whereas in the case of S3, it consists
in movings of clusters of global structures.

4.2.2 Outline of the algorithm

The algorithm described in this part is generic for most of the existing computer implemen-
tations of Least Squares Scaling. The minimization of the Stress function S(Y) is generally
achieved by a gradient descent technique which is a local minimization, so it is prone to get
stuck in local minima. As will be shown in a further section, the Stress function has many local
minima, hence the crucial importance of the choice for the initial configuration: this configura-
tion is generally defined whether randomly or by a Principal Components Analysis of the data
points. In the most general case, S(Y) sums over all the pairs of mapped data points, so the
computation of S(Y) and ∇ S(Y) have a complexity of order N2. As a consequence the number
N of mapped points is a crucial parameter for the algorithm and the technique is prohibitive for
large data sets. An outline of the MDS algorithm is given here below:

// Iterative MDS algorithm:

Define an initial configuration Y (0) 4

while (S(t) has not converged) do

1. normalize current configuration Y (t) 5

2. compute distances {di j} for current configuration Y (t)

3. compute target distances {d̂i j} (by monotonic or polynomial regression) 6

4. compute Stress value S(t)

5. compute gradient ∇ S(t)

6. compute step-size α(t)

7. compute new configuration Y (t+1) = Y (t)−α(t)∇ S(t)

end while

The convergence criterion used to stop the iterations can be one or a combination of the fol-
lowing criterions:
- a given number Nb_It of iterations were performed,
- the current Stress value S(t) is smaller than a threshold value Smin,
- the relative Stress decrease 2(S(t)−S(t−1))/(S(t) +S(t−1)) between two consecutive iterations
is smaller than a threshold value εS,
- the Stress gradient length G(t) = ‖∇ S(t)‖ is smaller than a threshold value Gmin.
The numerous experiments made on various data sets showed that the best choice is to use a
combination of the first and the third criterions, with for example Nb_It = 1000 and εS = 10−12.
This allows to go as far as possible in Stress minimization convergence, with a limit to avoid
minimization processes that never ends.

4whether randomly, by a PCA mapping or any other heuristic.
5this step is necessary to avoid configuration stretching indefinitely. It is not necessary if the normalization

factor Fn sums output distances {di j} instead of dissimilarities {δi j} as in equation (??).
6this step is present in non-metric MDS only, see §4.2.4 - section ’Computation of target distances’ .

4.2.3 Sammon’s non-linear mapping

Sammon introduced a technique called Non-Linear Mapping (NLM) [115] for the analysis
of multivariate data. The algorithm is based on a point mapping of D-dimensional vectors
from the data space D to a lower-dimensional such that “ the inherent structure of the data is
approximately preserved under the mapping” . The distance between vectors with indices i and
j in the D-dimensional space is the Euclidean distance and is denoted Di j. Sammon defines an
error E as

E =
1

N
∑

i< j
Di j

N

∑
i< j

(Di j−di j)2

Di j
(4.7)

which is minimized using the following rule:

ypq
(t+1) = ypq

(t)− (MF) ·
∂E(t)

∂ypq
(t)∣∣∣∣ ∂2E(t)

∂ypq
(t)2

∣∣∣∣ (4.8)

where MF is the so called “magic factor” which value was determined empirically to be optimal
when MF ∈ [0.3,0.4]. It can be seen that expression (4.8) is not a steepest descent rule, but
a Newton method’s (see equation 4.25) in which the Hessian matrix is approximated by its
diagonal. In a correspondence [86], Kruskal points out that Sammon’s algorithm is a particular
type of his multidimensional scaling, computed by the program M-D-SCAL (version 5M) that
minimizes the expression:

Sammon’s error E

∑
d2

i j

D2
i j

(4.9)

The denominator is connected with the fact that in Kruskal’s program, the normalizing factor
Fn sums over the output distances {di j}, whereas in Sammon’s mapping Fn sums over the
input distances {Di j}. Kruskal argues that “ the denominator under Sammon’s error is so nearly
constant over the region of interest that it hardly changes the resulting configuration” . This
is true if, as Kruskal does, the configuration is rescaled at each iteration to prevent it from
growing.

4.2.4 Kruskal’s non-metric scaling

The original program implementing Kruskal’s nonmetric scaling is called KYST from the ini-
tials of its authors [90]. This technique originating in psychometrics differs from previous one
in its nonmetric character, which comes from the fact that only the rank order of the dissim-
ilarities (and not their magnitudes) is considered during the mapping process. The searched
configuration must be such that the inter-points distances {di j} satisfy as much as possible the
relationships:

∀i, j,k, l : δi j ≤ δkl ⇒ di j ≤ dkl (4.10)

The situation when two dissimilarities are equal is called a tie and the decision about how to
constraint the corresponding distances is discussed in the paragraph “Treatment of ties” .

Construction of the Stress function

Kruskal motivates his choice for the Stress function by the fact the criterion that will be mini-
mized should measure how well the inter-point distances match the given data dissimilarities.
The idea is to “make a scatter diagram of distances versus dissimilarities and, since a direct
relationship is expected between these two quantities, to do a regression and measure how bad
the fit is by using the residual sum of squares from the regression.” The simplest kind of regres-
sion is a straight line of slope 1 through the origin. In this case, the regression sum of squares
called raw stress and noted S� reduces to:

S� =
N

∑
i�= j

(di j− d̂i j)2 (4.11)

where (i, j) are indices running over the N mapped points, i �= j means i = 1, ...,N and j =
1, ..., i− 1, i + 1, ...,N. 7 Then a scale or a normalization factor is defined in order to make
the Stress invariant to shrinking of the configuration of points (many other scale factors are
possible):

Fn =
N

∑
i�= j

d2
i j (4.12)

Finally, the square root of the normalized stress is taken in order to improve interpretability (by
giving a standard deviation-like measure), which leads to the following expression for Stress S:

S =

√√√√√√√√
N
∑

i�= j
(di j− d̂i j)2

N
∑

i�= j
d2

i j

(4.13)

Computation of the target distances

The calculation of the so called target distances {d̂i j} is performed in Kruskal’s original MDS
using monotone regression, also called ordinal or isotonic regression [4]. Another procedure
applied by Shepard in this purpose is the rank-image permutation [118] that was related to his
particular Stress function. The monotone regression procedure allows to compute the target
distances {d̂i j} on the basis of the inter points distances {di j} of the current configuration Y (t)
in such a way that the rank order of the {d̂i j}matches as much as possible the rank order of the
given dissimilarities {δi j}. This procedure is illustrated in figure 4.3, where we can see that the
target distances {d̂i j}, derived from the inter-point distances {di j}, have the same rank order as
the dissimilarities {δi j}.

7In nonmetric MDS, dissimilarities are often given as input data measurements that need not be symmetric,
which explains that the sum over the points indices must be for all i �= j in this section. In the following sections,
we will be concerned with symmetric similarities, since they are derived from computation of distances in the data
space D, then a summation for all i < j is sufficient.

bc inter-point distances dij

dij, d̂ij

δij

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

ut target distances d̂ij

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

Figure 4.3: Shepard diagram illustrating the monotone regression procedure.

Here follows an outline of the algorithm of the monotone regression procedure :
This procedure takes as input the dissimilarity matrix rank orders {δi j} and the actual con-
figuration distances {di j}, and outputs a set of target distances {d̂i j}. First sort the dissimi-
larities {δi j} in increasing order, and reorder the inter-point distances {di j} correspondingly.
Then draw a scatter plot of the distances (or Shepard diagram), in which each point Pk,k =
1, ...,N(N− 1)/2 has coordinates (di j,δi j). Link the points in the order of increasing dissim-
ilarities. If the curve thus obtained is monotonically increasing, then the inter-point distances
and dissimilarities are ordered in the same way and the inter-point distances are target distances.
If not, we have to find such target distances for which the curve will grow monotonically with
the dissimilarities, and that are as close as possible to the inter-point distances in the least
squares sense. In brief, monotone regression consists of working consecutively through the
distance values, checking whether they are in the same order as the given dissimilarities. When
an inversion appears, i.e. when one or more distance values decreases, then a ’block’ is formed
by taking the offending value and the preceding one. These are averaged until monotonicity is
restored between blocks. The sequence consisting of repeatedly comparing the target distances
and the dissimilarities orders is illustrated in steps 1 through 5 of Table 4.1. This table reported
from [29, p. 52] shows on an example the successive steps of a monotone regression.

Dissimilarities (δi j)

1 2 3 4 5
1 –
2 3 –

Object n◦ 3 6 4 –
4 10 5 7 –
5 2 8 9 1 –

Objects indices (column, row) (5,4) (5,1) (2,1) (3,2) (4,2) (3,1) (4,3) (5,2) (5,3) (4,1)
Dissimilarity sorted into order (δi j) 1 2 3 4 5 6 7 8 9 10
Distances in current configuration (di j) 3 6 3 5 8 10 13 11 9 15
Calculation of target distances:
Monotone regression step 1 3

step 2 4.5 4.5
step 3 5 8 10
step 4 12 12
step 5 11 11 11 15

Target distances (d̂i j) 3 4.5 4.5 5 8 10 11 11 11 15

Table 4.1: Derivation of target distances using Kruskal’s monotone regression procedure.

The fact that such a procedure is inserted in the optimization process of the Stress function
does not allow the complete optimization of the Stress function in the same way as for Sam-

mon’s mapping, because at each iteration the target distances are different. We will see in our
experiments that this handicap is of little practical importance.

Treatment of ties

Suppose there are dissimilarities which by chance are precisely equal to one another. How then
to interpret the constraint of the monotone relationship of the {d̂i j} to the {δi j}? The problem
is to decide how to sort the corresponding target distances. Kruskal provides two solutions to
this problem. One, which he calls the primary approach because it seems preferable, is to say
that when δi j = δkl we do not care which of di j and dkl is larger nor whether they are equal
or not, so we do not constrain d̂i j and d̂kl . The secondary approach is to say that δi j = δkl is
evidence that di j ought to equal dkl , so to impose the constraint d̂i j = d̂kl . The first approach
was chosen for all experiments reported in this work.

Computation of the step-size

At the time Kruskal developed his program, most of the gradient descent methods let the step-
size be proportional to the magnitude of the gradient (that is, they had a constant value of α).
Sammon in his nonlinear mapping designed a “Magic Factor” determined by experience to a
value of 0.3 or 0.4. Kruskal introduced an innovation by making the step-size be dependent on
the angle between the present gradient and the gradient of the previous step. Kruskal’s rationale
[87, p. 316] for his step-size procedure is as follows:

“After we have taken one step, we can see whether the step we have just taken
is too large or too small by looking at the angle between the gradient where we are
now and the gradient along which we have just moved. If the new gradient points
in almost the same direction as the old one (so the angle between them is near 0◦),
then we should have taken a larger step. If the new gradient is perpendicular to
the old one, the step we just took was about right. If the new gradient points back
almost in the direction we came from (so the angle is near 180◦), then the step we
just took was too large.”

Kruskal recommended for the calculation of α(t) [87, pp. 318-319]:

α(t+1) = α(t)×angle_factor×good_luck_factor×bias_factor (4.14a)

where:

good_luck_factor =
√

min(1,stress_ratio(t)) (4.14b)

angle_factor = 4(cosθ)3
(4.14c)

bias_factor =
1.6

[1+av_stress_ratio(t)5][1+av|cosθ|(t)−|avcosθ|(t)]
(4.14d)

stress_ratio(t) =
S(t+1)

S(t) (4.14e)

av_stress_ratio(t) = stress_ratio(t−1)
1
3 ×av_stress_ratio(t−1)

2
3 (4.14f)

θ = ̂(∇ S(t+1), ∇ S(t)) (4.14g)

av|cosθ|(t+1) =
2
3
|cosθ|+ 1

3
av|cosθ|(t) (4.14h)

|avcosθ|(t+1) =
2
3

cosθ+
1
3
|avcosθ|(t) (4.14i)

4.2.5 A comparison of metric and non-metric MDS

We are now concerned with the comparison of metric and non-metric algorithms from an ex-
perimental point of view. We want to find out how those two Stress minimization processes
differ, trying to answer the questions: “What does the monotone regression give more ?” and
“Which of the two methods leads to the best representation ?” It comes to mind just to com-
pare the two final Stress values (the lowest being the best), under the conditions: Start with
the same initial configuration, use the same Stress function and the same stopping criterion.
This amounts to taking for the non-metric mapping algorithm an exact copy of the used metric
mapping algorithm, in which data dissimilarities {δi j} are replaced by disparities {d̂i j} and a
monotone regression step as in section “Computation of target distances” in previous §4.2.4 is
added. It appears that, due to this monotone regression, a rescaling of the configuration is per-
formed at each iteration and the final configuration is stretched compared to the one obtained
from the metric algorithm8 (because we use a normalisation factor depending on the {δi j})
and, for this reason, a direct comparison of the two Stress values is meaningless. In order to
enable such a comparison, one must whether: use a Stress function invariant to configuration
rescaling (that is with Fn = f ({di j})), or one of the two final configurations (obtained from the
metric and non-metric MDS algorithms) should be rescaled so that it fits as well as possible the
other one. A particular field of multidimensional scaling called Procrustes analysis is precisely
devoted to such a matter, addressing the more general question: “How to rescale, rotate, reflect
and translate a configuration of points in order to make it match as well as possible to another
configuration of points, under the condition of a one-to-one correspondence of the points ?”
A short review of Procrustes analysis is given in [27, pp. 92-104]. Although this method was
designed to match to one another configurations of data in two different spaces, we can use it
to match the two final configurations obtained from metric and non-metric MDS.

8This property seems to be common to many iterative procedures. It can be related to neural networks learning
by the Hebbian rule where the weights have to be normalized to prevent them to grow without bounds [53, p. 36].

Procrustes analysis

Let us denote Ym (respectively Ym) the matrix of the final configuration obtained from the
metric (resp. non-metric) MDS algorithm, with ym,i (resp. ym,i) the vector representing point
Pi. The purpose of Procrustes analysis is to minimize the following expression:

R2 =
N

∑
i=1

(ym,i−ym,i)T (ym,i−ym,i) (4.15)

In the purpose of the visual comparison of metric and non-metric MDS final configurations, we
decided to rescale the non-metric MDS final configuration so as to make it as close as possible
to the metric MDS final configuration. This was achieved by the Procrustes analysis technique,
summarized as follows:

• Center configurations Ym and Ym by subtracting their mean vectors column-wise,

• Find the rotation matrix A = (Ym
T YmYm

T Ym)
1
2 (Ym

T Ym)−1

and rotate the Ym configuration to YmA,

• Scale the Ym configuration by multiplying each coordinate by ρ,

where ρ = tr(Ym
T YmYm

T Ym)
1
2 /tr(Ym

T Ym)

See [27, pp. 92-104] for more detailed analytical derivations of those expressions.

Comparison of Stress values

Let us denote Sm(Y) the Stress function minimized in the metric MDS algorithm, and respec-
tively Sm(Y) in non-metric MDS. Because the two functions are different (target distances
{d̂i j} in Sm(Y) replace dissimilarities {δi j} in Sm(Y)), a direct comparison of those values is
meaningless. We decide to compare the two methods using the metric MDS Stress expression
Sm(Y) for both configurations, computing the values Sm(Ym) and Sm(Ym). The comparisons
were based on two small9 data sets. One of them, called the animals data set, borrowed from
[82], is made of descriptions of 16 animals using 13 binary features (is small, median, big, has
2 legs, 4 legs, hair, hooves, mane, feathers, likes to hunt, run, fly, swim). The second data set
called cmyk is made of 68 colors with for attributes (their c, m, y and k components) expressed
as real numbers between 0 and 1. Convergence curves for both data sets are shown in figure
4.4, where we can see that the final Stress values are very close for the cmyk data set, and quite
different for the animals data set.

9because the program used for the Procrustes analysis (from the diskette accompanying [27]) takes maximally
in input 100 data points.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 50 100 150 200

St
re

ss
 S

m
(Y

)

iterations

metric MDS
non-metric MDS

(a) cmyk data set.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100

St
re

ss
 S

m
(Y

)

iterations

metric MDS
non-metric MDS

(b) animals data set.

Figure 4.4: Comparison of metric and non-metric MDS minimization processes.

Visual comparison of the resulting configurations

In order to visualize the differences in points positions between the final configurations for
the two previously mapped data sets, a Procrustes analysis was performed on the non-metric
MDS final configuration with respect to the metric MDS final configuration. The two fitted
configurations are then superimposed in a single plot, as shown in figure 4.5. It can be seen that
the configurations for both data sets are very similar.

(a) cmyk data set. (b) animals data set.

Figure 4.5: Comparison of metric and non-metric MDS final configurations. Crosses represent
configuration obtained from metric MDS, circles represent nonmetric MDS configurations.
Lines link the two positions of each data point from the two configurations.

This experiment indicates that for data sets in which inter-points distances are all different
and so can be ordered in a unique way, metric and non-metric MDS lead to very similar results,
but data sets for which many distances are identical, as are data sets with binary features, may
have quite different metric and non-metric final configurations. In the general case, it appears
that final configurations of metric and nonmetric MDS are often quite identical, so it can be
said that metric information can be recovered only from distance orderings. This result was
known already in the 60s, and pointed out by e.g. Shepard [118] [119].

4.3 Problems and limitations of the MDS model

4.3.1 Time complexity

The computation time scales as the square of the number of vectors in the data set, and thus
places a relatively low maximum limit on the number of objects that may be mapped simulta-
neously (about one thousand). We can distinguish in the literature two approaches directed at
alleviating this problem:

• subset selection The idea is to proceed in two steps: First, select from the data set a
subset of Nb (Nb� N) data points (let us call this subset the base) and map it using
MDS. Second, add somehow the remaining points of the data set to the map of the base
subset. This is what Shang and Lee called the frame method [23], in which they chose
to pick-up randomly the points to form the subset of Nb basis points. The resulting map
strongly depend on the chosen heuristic to define the base. A solution that seems more
attractive than random selection was presented in incremental scaling [6]. The idea is to
choose the Nb points with largest edge weights in the Minimal Spanning Tree of the data
set. In this way the Nb basis points are the ones that best reflect the global structure of
the data.

• data clustering Given that in large data sets, many data are similar, it can be decided to
first cluster the data and then map (and visualize) only the cluster centers. In his original
paper, Sammon suggested to perform a pre-processing of the data using a clustering
algorithm such as ISODATA when the number of data points exceeds a certain value.

The total computation time also depends on the applied minimization technique. Steepest de-
scent (SD) and the conjugate gradient (CG) techniques are known to be fast. The coordinate
descent method (CD) introduced by Niemann [102] is even faster and is reported to have ex-
cellent convergence properties [44]. The idea is to descend in the direction of the coordinates
cyclically (at each iteration another coordinate is chosen), and to choose the step-size by line
search. In the case of the Stress function, this amounts to minimize a 4-th order polynomial, or
a third order polynomial to be zeroed, which can be done analytically. Although this method is
fast, it leads to configurations with larger distortions than CG or SD.

4.3.2 Sensitivity to initial configuration

As it was mentioned in §4.2.2, the quality of the resulting configuration of points highly de-
pends on the initial configuration. This feature, shared with the SOM algorithm but not with
the PCA approach, is to be related to the iterative nature of those algorithms.

4.3.3 Local minima

The optimization techniques generally used to minimize the loss function are able to find a
local minimum. Optima with a small domain of attraction, if they occur, are likely to be missed.
Hence depending on the starting point of the minimization process, the method will end up in
a local minimum that can be better or worse. This problem is enhanced by MDS loss function,
because of the great number of local minima. In the case of unidimensional scaling (mapping
into a one dimensional space), it has been shown [109] that the number of local minima is
in general upper bounded by N!, and is equal to N! under certain conditions on the given
dissimilarities. It seems natural that the number of local minimums will be accordingly larger
when mapping in spaces with more than one dimension. In order to have an idea of how

such local minimums look like, we plot in 3 dimensions the Stress values as a function of one
representative point’s coordinates in the map space. In figure 4.6 two different Stress functions
are represented by 3-dimensional views of their surfaces in the neighborhood of such local (or
global) minimums.

−5

0

5

−8−6−4−202468
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
y

St
re

ss

(a)

−2

−1

0

1

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
y

St
re

ss

(b)

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

St
re

ss

(c) iris: The ring shaped valley is leaning.

−2−1.5−1−0.500.511.52
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

St
re

ss

(d) animals: Two local minima can be seen.

Figure 4.6: 3-dimensional “views” of Stress functions: Axes x and y represent one point’s
coordinates in the 2D space, the other points from the data set are fixed.

4.3.4 Lack of explicit mapping function usable for new data

LSS algorithm does not provide an explicit mapping function governing the relationship be-
tween patterns in the input space and in the projected space. Therefore it is impossible to
decide where to place new input data in the projected or configuration space. In other words,
LSS has no generalization capability. To project new data, one has to run the program again on
the pooled data (previously mapped data and new data).

4.4 Proposed improvements

4.4.1 Least Squares of squared distances

In order to alleviate the problem of time complexity of the algorithm, the Stress function can
be re-written as follows:

SS(Y) =
1
Fn

Nt

∑
i< j

wi j ·
(
δ2

i j−d2
i j(Y)

)2
(4.16)

The ALSCAL algorithm is based on such a measure where it is called SStress. This ex-
pression should lead to final configurations similar to the ones from the normal expression of
equation 4.3, probably with better preservation of larger distances due to the squares. The use
of squared distances instead of distances make the calculations simpler in the case where the
{di j} are Euclidean distances. Expressions for the derivatives with respect to the coordinates
vector Y will also be simpler, hence faster calculations of the gradient and optimized step-size.
Analytical expressions similar to the ones for the Stress function are presented for the SStress in
Appendix A (§A.2). We can see that the number of loops (ie. the summing terms) are identical
in both cases for all the expressions. The real gain in calculation time comes from the absence
in the SStress expressions of δi j/d3

i j and (δi j− di j)/di j terms that are replaced by a constant

(= 2) and term (δ2
i j−d2

i j), those last terms being already calculated during the SStress function
evaluation.

4.4.2 Choice of initial configuration

Empirical experience on various data sets showed that the best Stress reached after a sufficient
number of random initializations of the configuration is often lower than the Stress resulting
from the mapping initialized by the two first Principal Components, as shown in figure 4.7.
When the number of points to be mapped is not too large, it is possible to re-run the MDS
algorithm several times and keep the result yielding the lowest Stress. A possible strategy to
obtain a reasonably low minimum is to run the minimization algorithm with different random
initial configurations as long as the same lowest minimum value is obtained, e.g. for 30 %
of the trials. Then we can assume that this minimum is the global minimum. This approach,
called sometimes Multistart is guaranteed to find a global minimum, albeit after infinitely many
random trials, which is its weakness. Furthermore, multistart gives an indication of the region
of attraction of a (global) minimum, which is the space from which all searches lead to the
same minimum. If the data set is too large to allow several mapping trials, it is reasonable
to initialize the configuration by the two first Principal Components of the data set. Possible
strategies for the initialization are to take the first principal axes directly or after mapping the
data in 1-dimensional spaces initialized by the principal axes [50]. In the case of a single point
mapped relatively to an existing map, a better choice is to initialize the representative point by
the so called triangulation method [92], leading to an exact preservation of the distances to the
d closest fixed points in the D-dimensional data space D.

4.4.3 Global minimization of Stress

In order to face the problem of local minima, some techniques from global optimization can be
used because they do not get stuck in local minima. The main drawback of those techniques
is that they are generally very time consuming. We have attempted to apply the stochastic
Simulated Annealing (SA) method [75] combined with the downhill simplex method of Nelder

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2 4 6 8 10 12 14 16 18 20

fi
na

l S
tr

es
s

d - dataset intrinsic dimension

P.C.A. initialization
20 x random initialization

Figure 4.7: Comparison of final Stress values reached after random and Principal Components
initializations.

and Mead as proposed in [110, §10.9] to the minimization of the Stress. Experiments were
conducted on a few artificial data sets by comparing the final Stress value obtained after SA
minimization and optimized step-sized steepest descent. It appeared that SA minimization did
never find a lower minimum than the best one obtained from optimized steepest descent mini-
mizations (after several trials with random initializations). The stochastic Simulated Annealing
technique has been employed in MDS as well by Klein and Dubes [76], but they conclude
that the computational cost of simulated annealing makes it impractical, especially for small
problems. Simulated annealing has also been reported to be less efficient than a Molecular Dy-
namics particles approach in [44]. Global minimization of Stress should be continued in future
work because of the increasing computation power of computers that make those techniques
more and more accessible.

Various techniques designed at finding the global minimum of the Stress have been pre-
sented by different authors, among others: the Iterative Majorization [139] [67] and a statistical
mechanics approach [68] [77].

4.4.4 Improvement of convergence by step-size optimization

Kruskal’s ad hoc rule (expressed in equation 4.14) for the determination of the step-size α(t)
works fairly well for small values of d, but the algorithm becomes very sensitive to α for
larger values of d. It has been experimentally found in [30] that for the 3 data sets used in the
experiments, when d > 10, the traditional algorithm of Kruskal does not always converge. For
this reason, and also because Kruskal’s rule for the computation of α is not mathematically
optimal, we implemented an optimized formula for the calculation of α. The idea [43, pp.
140-141] is to derive an optimal step-size α using an approximation of the minimized function
by its second order Taylor expansion.

Optimal step-size α(k) for steepest-descent method

At iteration k, the representative configuration is held in vector Y (k). The steepest-descent
method applied to the minimization of a function S(Y (k)), which gradient is noted ∇ S(k) =
∇ S(Y (k)), is based on the following equation:

Y (k+1) = Y (k)−α(k) · ∇ S(k) (4.17)

or

Y (k+1)−Y (k) =−α(k) · ∇ S(k) (4.18)

The second order Taylor expansion of S expressed in vector form is

S(Y)≈ S(Y (k))+ ∇ S(k)T ·
(

Y −Y (k)
)

+
1
2

(
Y −Y (k)

)T
·H(k)

S ·
(

Y −Y (k)
)

(4.19)

for Y in the neighborhood of Y (k). At iteration k +1, Y = Y (k+1), then (4.19) gives

S(Y (k+1))≈ S(Y (k))+ ∇ S(k)T ·
(

Y (k+1)−Y (k)
)

+
1
2

(
Y (k+1)−Y (k)

)T
·H(k)

S ·
(

Y (k+1)−Y (k)
)

(4.20)

Replacing Y (k+1)−Y (k) expression in (4.18) into (4.20) gives:

S(Y (k+1))≈ S(Y (k))−α(k) ·
∥∥∥∇ S(k)

∥∥∥2
+

1
2

(
α(k)

)2
· ∇ S(k)T ·H(k)

S · ∇ S(k) (4.21)

S(Y (k+1)) is minimized with respect to α (k) by the choice

∂S(Y (k+1))
∂α(k) = 0, (4.22)

Applying (4.22) to (4.21) gives

∂S(Y (k+1))
∂α(k) ≈−

∥∥∥∇ S(k)
∥∥∥2

+α(k)× ∇ S(k)T ·H(k)
S · ∇ S(k), (4.23)

Finally (4.22) and (4.23) lead to the result

α(k) =
‖∇ S(k)‖2

∇ S(k)T ·H(k)
S · ∇ S(k)

(4.24)

When ignoring steepest-descent equation (4.17) and choosing Y (k+1) to minimize directly the
second order expansion of S expressed in (4.19), we obtain the expression used in Newton’s
method:

Y (k+1) = Y (k)−H(k)−1 · ∇ S(k) (4.25)

As we shall see from the detailed analytical calculations presented in Appendix A, the computa-
tion of the optimal step-size α(k) of expression (4.24) does not require an explicit calculation of

the Hessian matrix H (k)
S because of simplifications occurring in the product ∇ S(k)T ·H(k)

S · ∇ S(k).
After analytical simplifications of α(k)’s expression, its computation scales with d2N2 10. Many

10Computation complexity of α n is O(Nm ·dout) and of αd is O(Nm · (Nm + Nf) ·dout
2).

calculations needed to the evaluation of optimized step-size are shared with calculations needed
to the evaluation of the Stress function S(k) or its gradient ∇ S(k). Therefore the computer cost
of step-size evaluation is not much higher when using optimized α than when using Kruskal’s
α. As shown in figure (4.8), the great advantage of optimized step-size minimization over
Kruskal’s is that Stress decrease is much smoother, eliminating jumps upwards of Stress. Such
“peaks” appear especially when the configuration is near a local minimum, which is often the
case after configuration initialization by PCA. Those peaks, although they are sometime helpful
because they allow to “ jump” to a lower basin of attraction, make difficult the stopping of the
iterations. During a complete minimization process, the time saved by the fact that α is more
optimal and the minimization more efficient at each step is greater than the time spent in all
evaluations of step-sizes, so that the minimization process is at the same time shortened and
its convergence is improved. The plot of the evolution of Stress during minimization shown
in figure (4.8) confirms that convergence of the minimization process is improved by step-size
optimization while performance is most of the time as good as with Kruskal’s step-size.

0.025

0.0255

0.026

0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0 1 2 3 4 5 6 7 8 9 10

St
re

ss

time (sec.)

Kruskal’s ad hoc rule
optimized steepest descent

(a) iris data set, initializations by PCA.

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

St
re

ss

time (sec.)

Kruskal’s ad hoc rule
optimized steepest descent

(b) brod2 data set, initializations by PCA.

Figure 4.8: Comparison of Stress minimization by Kruskal’s or optimized step-size.

A performance comparison of the optimal step-size steepest descent method with other
optimization techniques

Minimizing a multivariate function such as the Stress function can be achieved using vari-
ous methods from the unconstrained optimization family of techniques. A number of methods
belonging to 4 classes is usually referred to [110], differing in the way they use the first and sec-
ond order derivatives of the minimized function: steepest descent methods, conjugate gradient
methods, Newton’s method and quasi-Newton methods. Experiments were conducted in order
to check how the steepest descent with optimized step-size for Stress minimization compares to
a conjugate gradient method and to the original Sammon’s method (ie. an approximated New-
ton method). It appeared that our method is the fastest of the three methods, and more efficient
(it gives comparable or slightly lower minima). Stress minimization performances for two data
sets are given in figure (4.9). The first one is iris and the second one is brod2 [30], a data
set (obtained through a wavelets decomposition of a Brodatz album image, see [30]) containing
245 vectors described by 39 features, the intrinsic dimension was estimated to be Di � 3. It can
be seen that the minima reached by all three methods are comparable, but the computation time
needed to reach this minimum is shorter for the optimized steepest descent than for conjugate
gradient or Sammon’s method. Jumps upwards of the Stress value during the first steps of the
iterative minimization may occur also with optimized step-size, although much more rarely
than with constant step-size along the gradient. These jumps just mean that the current point

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 1 2 3 4 5 6 7 8 9 10

St
re

ss

time (sec.)

Sammon (approx. Newton method)
conjugate gradient

optimized steepest descent

(a) iris data set, initializations by PCA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

St
re

ss

time (sec.)

Sammon (approx. Newton method)
conjugate gradient

optimized steepest descent

(b) brod2 data set, initializations by PCA.

Figure 4.9: Comparison of Stress minimization by approximate Newton method (Sammon’s),
conjugate gradient and optimized steepest descent.

X (k) is too far from a local minimum, so that the second order Taylor expansion of the Stress
function S(X (k)) is not a good approximation of this function in this neighborhood.

In order to summarize the reasons why to use MDS with optimal step-sized steepest descent
instead of a pure Newton’s method, we can say that Newton’s method:

• gives a greater improvement per step than the steepest descent

• needs intensive computation of H−1

• is well suited to the high-accuracy location of an optimum near which quadratic approx-
imation is good

On the other hand, steepest descent with optimal step-size is a compromise that:

• takes into account the curvature of S(k) at Y (k) (second order derivatives)

• is not as computationally intensive as a real second order method

• is more efficient than a conjugate gradient method.

4.4.5 Mapping new data using “ relative” mapping

Suppose we are now in the following situation: We know the mapping of a given data set (this
map may be obtained by MDS or any other technique), after which we receive new data (one
point or more) and we want to see where they would be placed with respect to the mapped points
from the data set. Let us first define the following notations: {X n} is the set of Nn new points
to be mapped and {Y n} their positions on the map, {X b} is the set of Nb data points already
mapped, called the base, and {Y b} their positions on the map. We remarked in §4.3.4 that MDS
does not provide any explicit mapping function that would project new data on an existing map,
and that the only solution is to pool the new data {X n}with the one already mapped {X b} in one
common set and run the algorithm on this pooled set. This approach suffer the inconvenience
to repeat the calculations needed to find the positions of the points {Y b} that were already
mapped. Another disadvantage is that the new points {Y n} will interfere with points {Y b}
during the mapping process to find their optimal position on the map. The configuration {Y b}2

obtained by mapping points {X b} together with the new points {X n} will then differ from the
configuration {Y b}1 that we had before (this difference is increasing with the ratio Nn/Nb).

The following simple modification to the Stress function will let the configuration {Y b}2 be
identical to {Y b}1: in the standard Stress expression (4.3), remove the distances between the
points {Y b} so that these points will be kept fixed during Stress minimization. The pooled data
set is initialized as follows: points {X b} are initialized by {Yb}1 and the new points {X n} are
initialized in one of the following ways11:

• each point Pn
i is initialized individually by linear interpolation between its 2 nearest

neighbors denoted (Pb
1 ,Pb

2) among the points {Pb}. Denoting dn1 = d(Pn
i ,Pb

1) and d12 =

d(Pb
1 ,Pb

2), {Y n
i } is found from the relation

−−→
Pb

1 Pn
i = dn1

d12

−−→
Pb

1 Pb
2 .

• each point Pn
i is initialized randomly.

In other words, as the primary purpose of the Stress function is to perform a least square min-
imization on the distances, it only needs to sum over the distances that are changing during
minimization. As some distances are constant during Stress minimization (the distances be-
tween fixed points {Y b}), the Stress expression can be redefined as

Sr(Y) =
Nm

∑
i< j

wi j ·
(
δi j−di j(Y)

)2 +
Nm

∑
i=1

Nt

∑
j=Nm+1

wi j ·
(
δi j−di j(Y)

)2 (4.26)

in which the pairs of points taken into account in the sum are all the pairs of new points
{Xn

i ,Xn
j , i �= j} plus all the pairs {X n

i ,Xb
j }. The ensuing mapping process is called relative MDS

mapping because the new points {X n} are mapped relative to the points {X b}.12 A scheme of
relative MDS mapping as compared to standard MDS mapping is given in figure 4.10. The
algorithmic complexity of relative mapping can be reduced by taking into account even less
distances in the Stress expression, for instance by taking, for each new point, its distances to its
k nearest neighbors in the basis of fixed points (instead of all the points of the basis). As will
be shown in chapter 6 on applications of MDS, relative mapping can be used to visualize large
data sets in the following manner: first clusterize in some way the data points to reduce their
number in order to allow the mapping of the clusterized points using standard MDS, then add
to the clusters map the original points using relative MDS.

Other approaches to add generalization capability to MDS

A first simple idea to provide MDS with generalization capability is the following: First map
the data using any MDS algorithm, and then build a classical neural network (e.g. MLP with
linear transfer functions in output layer units) that learns the produced 2-dimensional points
coordinates on the basis of the D-dimensional input data.

A method called distance mapping was proposed in [108]. We denote Db the distance
matrix for the points of the base in the input data space, and as before Yb is the coordinates
matrix of the base. First we define matrix V such that:

DbV̇ = Yb (4.27)

Matrix V necessarily exists because matrix Db is full rank. Then we derive matrix Ynew of the
new data points coordinates using:

Ynew = DnewtobaseV (4.28)

where Dnewtobase is the matrix of the distances between points in Xbase from points in Xnew.
11Initialization by a PCA of the pooled data set would require a kind of Procrustes analysis to make the initial

positions of the fixed points derived from the 2 first PC match as well as possible to the {Yb}1. This solution needs
many calculations.

12The idea of minimizing the Stress function was presented by Demartines in his PhD thesis [34] (where it is
called interpolation) in order to provide generalization capability (continuity) to his mapping.

Data space
(e.g. D = 3)

x1

x2

x3

Pb
1

Pb
2

Pb
3

Pb
4

Pb
5

D12

D13D14

D15

D23D24

D25

D34

D35

D45

Data points Pb
i

Map space
(e.g. d = 2)

pb
1

pb
2

pb
3

pb
4

pb
5

d12

d13

d14

d15

d23

d24

d25

d34

d35

d45

Map points pb
i

(a) Standard MDS mapping: sum over all inter-point distances, all points are moving.

Data space
(e.g. D = 3)

x1

x2

x3

Pb
1

Pb
2

Pb
3

Pb
4

Pb
5

b

Dn1

Dn2

Dn3
Dn4

Dn5

New data point Pn
1

Map space
(e.g. d = 2)

pb
1

pb
2

pb
3

pb
4

pb
5

b

dn1 dn2

dn3

dn4

dn5

New map point pn
1

(b) Relative MDS mapping: sum over all distances to new point, only point p n
1 is moving.

Figure 4.10: Mapping new data using “ relative” mapping.

4.4.6 Zooming on subspaces using “ localized” mapping

In the case of database exploration, it is desirable to focus on chosen areas of the data space.
Such an area can be defined interactively by choosing one data point Pc and zooming its data
neighborhood {PNc}, that is the part of the data space that contains the k–nearest neighbors of
Pc, or the data points within a neighborhood of given radius r. As our interest is the neighbor-
hood of point Pc, the distances from Pc to the points from {PNc}, as well as distances separating
points close to Pc, should be primarily preserved. This special feature of the mapping can be
realized by choosing properly the weights in the Stress expression. Our proposal is to choose
a Gaussian-like term centered on point Pc as a functional of the decreasing mean distance
Dci j = (Dci +Dc j)/2 between Di j end points (Pi and Pj) and point Pc, expressed as:

wi j =
1

σ
√

2π
· e−

D2
ci j

2σ2 , (4.29)

Parameter σ allows the controlling of the width of the neighborhood with better topology
preservation and it must be adjusted manually when zooming. As shown in [101], this tech-

nique can improve the resulting mapping, although not necessarily, depending on the value
choosen for σ.

Chapter 5

A comparison of MDS and SOM
algorithms in practice

Data topology preservation

The two approaches presented above are non-linear mappings, they are hence able to display
non linear data manifolds, which cannot be realized using the linear PCA. For a given data set,
there is no one projection that is better than all the others. Each approach presented in this thesis
is optimal in its own particular way. It is not possible to point out universal mapping technique,
since the mapping effectiveness varies with the data structure and the user’s expectations. The
following quotation of Siedlecki et al. [120] affirms this point of view :

“ In attempting to evaluate mapping techniques, we have to agree that the di-
mensionality reduction techniques, if used to create two-dimensional displays,
serve a human observer; therefore, the human observer is uniquely qualified to de-
cide whether the display is good or useless for a particular application. [...] Since
human intuition plays the main role in this data analysis process, it seems unrea-
sonable to evaluate display produced by mapping methods by directly applying
numerical criteria to the displays, for these criteria cannot fully reflect the overall
information carried by these displays.”

It follows that comparing mappings obtained by SOM and MDS using e.g. their Stress values
would lead to a false conclusion that MDS is better than SOM because the Stress is evidently
better. Siedlecki et al. compared in their study a set of mapping techniques on the basis of
several people analyzing independently the mapping results produced for several different data
sets.

We conducted various experiments in order to show how MDS and SOM compare from
the point of view of data topology preservation when visualizing multivariate data. The well
known iris data set was previously displayed using SOM in figure 3.3 (page 18), and using
MDS in figure 4.1 (page 33). It can be noted that SOM fails to capture the global relationships
between the three clusters, and the local dispersion of the clusters. Experiments designed to
see how the algorithms manage to map simplexes [42] showed that the symmetry existing in
N-dimensional simplexes is much better rendered by MDS than by SOM, as shown in figure
5.1(b). Similar experiments on mappings of spheres or hyper cubes (see figure 5.1(a)) [40] lead
to the same conclusion as reported in [41].

Another example showing the differences between mappings obtained from the two meth-
ods is the color data set, consisting of 124 colors described by 3 numbers (floating points
scaled between 0.0 and 1.0, instead of integers between 0 and 255), corresponding to the
(R,G,B) levels of the colors. The reason for using color data is that human can easily check

53

perceptually inter-colors similarities if each color data is marked using the color it represents.
The mappings presented on figure 5.1(c) show that both methods exhibit topology preservation
(the colors are varying continuously on both maps), but the SOM mapping is “stretched” to fit
the given array of nodes.1

Feature extraction capability

As mentioned in §1.3, a reduction of the dimensionality of multivariate data can enable the
application of pattern recognition procedures and avoid the “curse of dimensionality” problem.
It is interesting to check how much DR affects the classification performances of a given clas-
sifier. The effect of the reduction of data dimension by one linear (PCA) and four non-linear
techniques (SOM, MDS, NLM, AFN) was compared from the viewpoint of classification per-
formance using a k–NN classifier (k = 5) with the leave-one-out technique, on one artificial
and two gray-level and color texture data sets [30] [117]. This study showed that all four non-
linear DR techniques lead to better classification results than PCA, and that data reduced by
neural networks (SOM, AFN) give better classification results than those obtained by statistical
mapping methods (MDS, NLM), especially when the number of reduced dimensions is small
(d < 4).

Generalization capability

An important feature to the credit of neural networks in general is that they offer an explicit
mapping of data points, allowing thereby the mapping of new points. For instance points from
a test set unused during the training stage of the network can be easily added onto the existing
map of the training data. Mapping new points using standard MDS is not possible directly. The
additional feature of mapping with respect to already mapped points is a contribution of this
work and is called relative mapping.

Memory requirements

The main memory requirement of SOM algorithm is for the codebook storage, whereas MDS
algorithm needs at least the dissimilarities and inter-point distances storage. The memory
needed for the codebook vectors scales with the number of neurons on the output layer of
the SOM and with the data space dimensionality Xdim ·Ydim ·D. SOM algorithm will have in-
creasing memory requirements for large maps, which is recommended when the data set size
is large or in order to increase data topology preservation. The memory needed for the dissim-
ilarities and inter-point distances storage in MDS scales with their number N(N−1)/2. MDS
algorithm will have exponentially increasing memory requirements when applied to large data
sets. For very large databases, SOM is better suited to the visualization because (due to the
fixed number of neurons on the map) it performs a kind of clustering of the data. MDS al-
gorithm being sensitive to the number of points (in terms of memory and time complexity), a
separate clustering pre-processing (using for instance the technique applied to the thyroid
data set in §6.2.1) of the data should be considered.

Time complexity

The time complexity of both algorithms is mainly related to the same parameters as for memory
requirements. Hence the main computational advantage of SOM over MDS is related to the

1Several SOM maps showing colors on the basis of their RGB values are presented in [69], in the purpose of
introducing the words category maps on which the two level WEBSOM is based.

number of points that can be mapped, which can be for SOM much larger than for an MDS
mapping. On the other hand, the dimensionality of the data has practically no effect on MDS
time complexity, but increases the one of SOM.

Typical applications

SOM algorithm can be used in applications which purpose is the visualization of a very large
number of data (e.g. databases of texts) or in applications in which new data are created during
times (e.g. monitoring of industrial processes [1]). SOM is suited for these data analysis
and engineering tasks because they require at the same time a visualization of many database
objects and a classification of new incoming data of similar nature. But it must be kept in mind
that the performances of SOM for each of those two tasks taken separately are poor. The main
advantage of SOM is hence to regroup those two features in one compact tool that is quite small
and simple to implement. MDS algorithm was designed as an exploratory data analysis tool
which principal feature is data topology preservation that is assorted with a mean to control the
quality of this data topology preservation by the design of the Stress function. MDS should be
used then in applications processing multivariate data sets of moderate size for which a display
showing precisely inter-data relationships is needed. Medical data often possess those features
hence the idea to apply MDS in medical diagnosis aid tools.

(a) Mappings of the hypercube data set in 5 dimensions (32 vertices) S 1 = 0.110

(b) Mappings of the simplex data set in 20 dimensions (21 vertices) S 1 = 0.144. This display is in contra-
diction with [121], where it is reported that the global minimum of a simplex is all points equally spaced on
a circle with radius r = 1/

√
3, and the corresponding Stress value is Smin = 1

3 (̇N−3)/(N−1). For N = 21,
we should get Smin = 0.3. Our numerous experiments showed that the optimal display is always with points
regularly placed on several concentric circles.

(c) Mappings of the color data set in RGB space (124 colors)

Figure 5.1: A comparison of SOM (left) and MDS (right) mappings for three data sets.

Chapter 6

Applications of MDS

In order to enable the user to see more precisely the global or local data structures of a given
data set, an interactive MDS based mapping software has been developed. As we will see in
this section, this interactive exploratory data analysis tool can be used to first visualize the
global structure of a data set, and then zoom in chosen areas of the data space.

Data pre-processing

Very often in practical applications, data are pre-processed in order to prepare them to the
main procedures. It can be asked which pre-processing is necessary prior to visualization by
MDS? For the multivariate data we deal with, such a pre-processing can be just a centering of
the data, a standardization, normalization or whitening, or treating in some way the possible
missing values. MDS is based on distances, so any transformation that affects distances will
modify the visualization. Centering the data is just a shifting of the configuration and has no
inference on the distances, so it can be applied prior to MDS. Any pre-processing that changes
the relative scales of the features will have a drastic effect on the result if distances are not
preserved. It is obvious that standardization does not preserve Euclidean distances, therefore
this transformation is not orthonormal [52] and it is not desirable in the case of MDS. In many
real-life data such as medical data, the features are made up of various measurements of very
different nature (age, temperature, blood pressure, ...) that have different ranges and means.
Distances based on such raw data would over-emphasize the importance of features with very
large values. This is why standardization is often performed on medical data sets. Data were
also standardized in the case of classifier’s decision borders visualization, when the classifier
itself was trained on standardized data and then new data classified after standardization.

Concerning the missing data occurring in real life data sets, we implemented in our soft-
ware the following possible treatments. Discard data points that have at least one missing
feature, discard the features with at least one missing value, set the missing feature values to
the mean feature value averaged on all the data points or within classes. Another strategy that
was claimed to perform well in pattern recognition tasks [38] is the following: When comput-
ing the distance between two objects, set the missing difference(s) to the mean value of the
computed differences for this pair of objects.

57

6.1 Visualization of psychometric data

6.1.1 Database visualization

An interesting application of our interactive MDS software to the visualization of medical
databases or data sets is the visualization of a given new case or patient in relation to known
cases from the database.

The psychometric test Minnesota Multiphasic Personality Inventory (MMPI) [20] [21] was
designed to help practitioners to diagnose psychological diseases. This test consists in ask-
ing the patient more than 550 questions about various aspects of his life to which the possible
answers are “yes” , “no” , “I don’t know” . On the basis of the answers, a set of 13 numer-
ical scales (integers from 20 up to 120) is computed leading to a “profile” of the patient. Then
practitioners diagnose the patients, and a set of psychometric nosological types (or classes) can
be built. In the case of the data analyzed here below, the classes defined by J. Gomuła and T.
Kucharski are the following:

Women types: norm, neurosis, psychopathy, organic, criminality, schizophrenia, reactive
psychosis, involutive psychosis, simulation, deviational answering style 1 to 6.

Men types: neurosis, psychopathy, alcoholism, criminality, schizophrenia, reactive psy-
chosis, simulation, deviational answering style 1 to 6.

Common types: norm, psychopathy, drug induction, organic, syndrome delusion, reactive
psychosis, paranoia, manic state, simulation, and dissimulation.

The patients are grouped into two databases, according to the patient’s gender. The women
database contains 1711 patients distributed into 20 classes of women and common types. The
men database contains 1787 patients distributed into 20 classes of men and common types.
There is no missing data in these data sets.

The size of each database is small enough to allow its complete mapping in one MDS run,
even with the Multistart initialization approach to get the best possible final display1. Then if
a practitioner gets the psychometric measurements of a new patient, the new data point can be
mapped onto the database display using relative mapping, which can be done quickly because
just one point is moving during the mapping. In this way, the practitioner obtains immediately
an image of the location of his patient in relation to the database known cases, and is able
to make a judgement on how to classify this patient. In this manner, the practitioner can use
the software as a diagnosis aid tool. Displays of the two databases for women and men are
shown in the following 8 figures 6.1 to 6.8: The first 4 figures represent the women database
visualized using PCA mapping (fig. 6.1), MDS mapping (fig. 6.2), SOM mapping (fig. 6.3)
and the decision borders of the SOM mapping as shown in §3.3.4, fig. 3.6(b) (fig. 6.4). In
figures 6.2 and 6.3, a new data (black dot marked by an arrow) has been added to the database
maps using relative mapping for MDS and usual data mapping for SOM. On both displays, the
black dot is mapped close to data from class organika (light blue dots), suggesting such a
classification. The last four figures represent the mappings using the same methods for the men
database. The displays of the databases obtained by the Self-Organizing Maps algorithm are
shown here in a purpose of comparison with the ones obtained by MDS mapping. It can be seen
that some classes (e.g. norma, psychopatia and organika) are more clearly separated
on the MDS mappings (figures 6.2 and 6.6) than on the PCA mapping (figures 6.1 and 6.5).

1This was not very useful however because the result obtained after PCA initialization was much better than
all the 100 random trials. This may suggest that the iterations were stopped too early, so that the stopping criterion
should be made dependent in some way on the data set size.

norma_k

nerwica_k

psychopatia_k

organika_k

schizofrenia_k

zespol_urojeniowy_w

psychoza_reaktywna_w

paranoja_w

stan_(hipo)maniakalny_w

przestepczynie_k

alkoholizm_w

narkomania_w

symulacja_k

dyssymulacja_w

dewiacyjny_styl_odpowiedzi_1_k

dewiacyjny_styl_odpowiedzi_2_k

dewiacyjny_styl_odpowiedzi_3_k

dewiacyjny_styl_odpowiedzi_4_k

dewiacyjny_styl_odpowiedzi_5_k

dewiacyjny_styl_odpowiedzi_6_k

Figure 6.1: Psychometric women database visualized using PCA mapping: data points mapped on the two first principal components.

norma_k

nerwica_k

psychopatia_k

organika_k

schizofrenia_k

zespol_urojeniowy_w

psychoza_reaktywna_w

paranoja_w

stan_(hipo)maniakalny_w

przestepczynie_k

alkoholizm_w

narkomania_w

symulacja_k

dyssymulacja_w

dewiacyjny_styl_odpowiedzi_1_k

dewiacyjny_styl_odpowiedzi_2_k

dewiacyjny_styl_odpowiedzi_3_k

dewiacyjny_styl_odpowiedzi_4_k

dewiacyjny_styl_odpowiedzi_5_k

dewiacyjny_styl_odpowiedzi_6_k

nowy_punkt

new data

Figure 6.2: Psychometric women database visualized using MDS mapping: PCA initialization, final Stress: S1 = 0.021 (142 iterations).

Figure 6.3: Psychometric women database visualized using the Self-Organizing Maps mapping: 100×75 neurons, random init. nb. 8.

Figure 6.4: Psychometric women database visualized using the Self-Organizing Maps mapping: decision borders are visualized.

Figure 6.5: Psychometric men database visualized using PCA mapping: data points mapped on the two first principal components.

norma_m

nerwica_m

psychopatia_m

organika_m

schizofrenia_m

zespol_urojeniowy_w

psychoza_reaktywna_w

paranoja_w

stan_(hipo)maniakalny_w

przestepcy_m

symulacja_m

dyssymulacja_w

alkoholizm_m

narkomania_w

dewiacyjny_styl_odpowiedzi_1_m

dewiacyjny_styl_odpowiedzi_2_m

dewiacyjny_styl_odpowiedzi_3_m

dewiacyjny_styl_odpowiedzi_4_m

dewiacyjny_styl_odpowiedzi_5_m

dewiacyjny_styl_odpowiedzi_6_m

Figure 6.6: Psychometric men database visualized using MDS mapping: PCA initialization, final Stress: S1 = 0.018 (471 iterations).

Figure 6.7: Psychometric men database visualized using the Self-Organizing Maps mapping: 100×75 neurons, PCA initialization.

Figure 6.8: Psychometric men database visualized using the Self-Organizing Maps mapping: decision borders are visualized.

6.1.2 Detection of outliers

A second application of MDS to the visualization of medical databases is the detection of
outliers. In general in statistics, outliers are atypical, infrequent observations. Due to various
incidents that may occur during the data acquisition procedure (such as erroneous measurement
or fatigue of the practitioner), some cases in the database may be wrongly labeled or located in
the data space very far from the rest of the data. Such cases can be easily detected when visu-
alizing the whole database cases in one display. The database generally forms a dense cluster
of points whereas outliers are isolated points located outside of the main cluster. Examples of
outliers can be seen in figure 6.2, in which one point appears isolated on the left side (point
nb. 941 from class dewiacyjny_styl_odpowiedzi_1_k), as well as the two rightmost
points (point nb. 357 from class paranoja_w and point nb. 29 norma_w) in figures 6.2 and
6.9. The fact that those two outliers are close from one another but belong to different classes
suggests that one of those subjects may have been wrongly diagnosed and labeled. Wrongly
labeled data can be detected as well if the different classes are naturally well separated, whereas
some points appear in the neighborhood of points forming a cluster of a different class.

6.1.3 Zooming in interactively chosen data subspaces

When visualizing a large database, we often need to focus our view on particular data and its
neighborhood. Viewing a part of a database that is chosen from the whole database display
is called here “zooming” . It is possible to perform such a zoom by just enlarging the scale
factor between the representation space M and the screen coordinates space and such tools
were developed. This first zooming tool based on the whole database map is called static zoom
because we always see portions of the same map with changing magnification factors. Another
possibility which we call dynamic zooming is to select from the database display data points
defining the data subspace to be viewed magnified, and then to perform again a mapping of the
selected points separately by MDS. An interactive data points selection tool allowing to select
some points directly from the plot was implemented in our software in this purpose. Different
selection methods are available: select one point separately by clicking on it, select points in a
rectangle, select the k nearest neighbors (in the map space M or in the data space D) of a chosen
point, or select the points within a radius r around a chosen point. It is possible to deselect part
of the selected points using those methods.

The display of the selected points when mapped separately can be very different than when
those points were mapped among thew other database points, due to the reduced number of
distances constraints. Even if it is similar, it can appear rotated or reversed (upside-down or
right-left). A Procrustes analysis could be applied here to rotate and possibly flip the zoomed
data points configuration, which is not included in our software at its present stage of devel-
opment. An example of zooming in a subspace of the psychometric women-b2 database is
shown in figure 6.9. We see that dynamic zoom configuration (fig. 6.9(c)) is quite different
from the static one (fig. 6.9(b)), and its Stress value S1 is much lower, so the view in figure
6.9(c) is topographically more correct.

2This is a different women database than the one visualized in §6.1.1. This second database is made of 1027
samples into 27 nosological classes.

(a) Psychometric database (without 14 outliers): 147 points inside the rectangle were selected.

(b) Static zooming in selected area: enlarged view of the points inside the rectangle. S 1 = 0.2088

(c) Dynamic zooming in selected area: new configuration after a separate mapping. S 1 = 0.0514

Figure 6.9: Zooming in an interactively chosen database subspace using MDS mapping.

6.2 Visualization of classifiers decision borders

So far we applied MDS to the visualization of data sets to get an insight into the different data
classes by looking at their relative positions or distributions in the data space. We are also able
to locate a new data on an existing map. It can be of great help for people facing the problem of
the choice of the appropriate classifier to a given classification task to see not only the classes
of the training data, but also how a given classifier separates them. As well as classes involved
in a classification task can be represented by subsets of particular objects or points, a classifier’s
decision borders can be represented by points in the data space. The following notations will
be used in this section:
STD = {PTDi, i = 1, ...,NTD}, the set of NTD training data points in data space D,
SDB = {PDBi, i = 1, ...,NDB}, the set of NDB decision border points in data space D,
sTD = {pTDi, i = 1, ...,NTD}, the set of training data points in mapping space M,
sDB = {pDBi, i = 1, ...,NDB}, the set of decision border points in mapping space M,

Classification tasks are most of the time based on a set of several independent features, so
the space in which classification operates (also called here feature space) has as many dimen-
sions as there are features. But the number of features really needed by the classifier to learn
the training data (or to classify them well) may be smaller than the total number of available
features; the interesting features can be selected in a pre-processing stage of feature selection.
When a classifier uses only a reduced number of features, the mapping of the decision border
should be based also on those selected features. This principle was applied for all experiment
in this section. Multidimensional scaling can be applied to the visualization of the training
data and decision borders of a classifier (both featured by multivariate data and represented by
points on a plot). The heuristics that we designed to produce the decision borders points often
lead to a great number of new multivariate data. As we wish to visualize those data on the same
plot as data points representing the classes, the computation time and memory needed to map
all those points together in one batch becomes prohibitive (for the reasons given in §4.3.1). A
solution to this problem is to apply the relative mapping in the following way:

1. Use standard MDS to map only the classifier’s training data points {PTDi},

2. Use relative MDS to map only the classifier’s decision borders points {PDBi}with respect
to the mapped training data points {PTDi}, that are now fixed. This second step can be
performed in three ways: a) If the number NTD of generated decision borders points is
small enough, then map points {PDBi} and {PTDi} together using standard MDS. b) If
NTD is too large to allow a 1 run mapping, then map points {PDBi} using relative MDS
mapping in one batch, or c) map points {PDBi} using relative MDS mapping sequentially
in NDB batches of 1 point each.

In the case of small data sets, we visualized the decision border points together with the training
data points by mapping them using MDS in 3 possible manners: a) all training data and border
points mapped together in one MDS run, b) all training data firstly mapped by MDS, all border
points {PDBi} mapped in one MDS run relative to the data points, and c) all training data
firstly mapped by MDS, each border point PDBi is mapped relative to the data sequentially. The
purpose was to find out how much the choice of the technique used for the mapping influences
the resulting configuration. The mappings obtained for the appendicitis data set (see
§6.2.1) together with several decision border sets showed that the 3 methods lead to very similar
configurations.

The problem of visualizing a classifier’s decision borders can be approached in two quite
different ways. The first one is generative because the border itself is shown, the second one is

inductive because the border is not directly shown but induced by the resulting display. Those
two approaches are defined here below:

• Approach 1: Generate new points that are located on the decision borders and map them
onto the map of the training data (the decision border is made by the “ line” connecting
the new points),

• Approach 2: Generate new points in the neighborhood of the decision borders, classify
them and map them onto the map of the training data (the decision border is seen as the
interface of different areas filled and colored by the new points),

6.2.1 Visualization of classifiers decision borders – Approach 1

Three different heuristics have been designed in order to generate new points in the feature
space that are located on a classifier’s decision border:

1. Generate new points directly on decision borders hyperplanes,

2. Generate new points on lines between data points,

3. Generate new points on lines between vertices of a discretized data space.

Generate new points on decision borders hyperplanes

In the case of a classifier based on rules, the decision borders are defined in the feature space
by hyperplanes that are analytically known. Decision borders points can be found whether by
perpendicular projections of the training data on these hyperplanes, or by random generation
of points from the hyperplanes. In this last case, the points are generated from a uniform
distribution, in the neighborhood of the data and not anywhere on the hyperplane. In a purpose
of illustration, we designed artificial data sets in data spaces with D = 3, D = 5 and D =
10 dimensions. Each of these data sets is made of two clouds of 100 points formed using
a Gaussian distribution3 centered at points P1(x11 = −1,x1i = 0, i = 2, ...,D) and P2(x21 =
+1,x2i = 0, i = 2, ...,D). The Gaussian distributions have null covariances and equal variances
in all dimensions: We chose i) σ = 0.2 to have 2 well separated classes, and ii) σ = 0.6 to have
a bit of overlapping between the two classes. The ensuing data sets are called gauss3s2 (D =
3 and σ = 0.2), gauss3s6 (D = 3 and σ = 0.6), and similarly gauss5s15, gauss5s5,
gauss10s2 and gauss10s5. The hyperplane defined by P = {(x1, ...,xD)T : xi = 0, i =
1,4, ...,D} is theoretically the optimal4 hyperplane separating those two classes, so it can be
regarded as a decision border hyperplane. Then we generated 200 decision border points on
hyperplane P in the following two ways: a) project perpendicularly the points from the two
classes on P, b) generate random points on P with a uniform distribution limited to the area
between the Gaussian distributions, that is on a disc centered at the origin with radius such that
the decision border is as long as the data range. The two Gaussian clouds were first mapped
using MDS and the decision border points were added by relative MDS, the resulting maps are
shown in figure 6.10.

3Gaussian distributions were generated using the RANLIB library available at the Statlib repository.
4It would be optimal in the case of infinite number of points generated in the Gaussian distributions.

(a) gauss3s2 data set with border points defined by
projection of the data points on hyperplane P.

(b) gauss3s2 data set with border points defined
uniformly on a disc of radius 2 on hyperplane P.

(c) gauss3s6 data set with border points defined by
projection of the data points on hyperplane P.

(d) gauss3s6 data set with border points defined
uniformly on a disc of radius 2 on hyperplane P.

(e) gauss5s15 data set with border points defined
uniformly on a disc of radius 1 on hyperplane P.

(f) gauss5s5 data set with border points defined uni-
formly on a disc of radius 2 on hyperplane P.

(g) gauss10s2 data set with border points defined
uniformly on a disc of radius 1 on hyperplane P.

(h) gauss10s5 data set with border points defined
uniformly on a disc of radius 2 on hyperplane P.

Figure 6.10: Two multivariate Gaussian distributions with a planar decision border.

As it could be expected, the hyperplane P separating the 3-dimensional Gaussian distri-
butions is represented by straight lines on the four displays of (figures 6.10(a) to 6.10(d)).
For the 5-dimensional Gaussian distributions (figures 6.10(e) and 6.10(f)), we observe that the
border line gets thicker and is shorter. This effect is more clearly visible on the plots of the
10-dimensional Gaussian distributions (figures 6.10(g) and 6.10(h)), where the hyperplane is
reduced to a cluster in the midway between the two Gaussians. Those distortions are involved
by the greater reduction of dimensionality (from 10 or 5 to 2) than in the previous cases (from
3 to 2). The distortions result from the fact that when an hyperplane embedded in a higher
dimensional space is defined by {(x1, ...,xD)T : xi = 0, i = 1,4, ...,D}, all the dimensions other
than x2 and x3 collapse to one point, hence the resulting central cluster. From this last obser-
vations we are inclined to think that in high dimensional real data sets, decision borders (even
simple 2-dimensional ones, that is defined as hyperplanes) may be difficult to see as separate
straight lines on a planar display.

Generation of new points on lines between data points

The idea to find a point on the decision border between two classes is to move a point in the
feature space on a straight line between two data points belonging to different classes and to
check the class of the moving point as attributed by the classifier. When its class changes, it
means that we moved over the decision border and this point is kept as a decision border point.
We generate decision border points on lines between data points from two classes as follows:

• select a subset S′TD = {P′TDi, i = 1, ...,N′TD} of the training data set STD containing those
points that are close to the decision border: these are the training data points around
which in a given neighborhood there are training data points from a different class. This
neighborhood can be defined by a given radius or by a given number of nearest neighbors.
An alternative is to take all the points in STD if they are not too numerous.

• select pairs of points {(P1,P2) : C(P1) �= C(P2)} from subset S′TD, such that the two
points belong to different classes: the pairs are formed by neighboring points, whether
within a hypersphere of given radius r or among the k nearest neighbors,

• find the border points following the scheme: for each selected pair of points (P1,P2),
move a point PDB on the line joining P1 to P2 (stepping by a small value ε) checking its
class C(PDB), and stop when C(PDB) changes from C(P1) to C(P2). Add point PDB to the
decision border set SDB.

This technique was applied to the visualization of decision borders of the appendicitis
data set. This data set provided by Shalom Weiss from Rutgers University contains 106 vec-
tors with 8 numerical attributes (named WBC1, MNEP, MNEA, MBAP, MBAA, HNEP and
HNEA), distributed into 2 classes: 85 cases belong to class “1” (80,2% of the data) are severe
appendicitis cases and 21 cases belong to class “2” (19,8%) that are other disease cases. The
visualized classification rule is:

if (MNEA≥ 6650) then class_1 else class_2. (6.1)

The decision border of this rule is defined in the data space by an hyperplane, but as can be
seen in figure 6.11 the points representing the rule are not mapped on a straight line due to
distortions of the data topography.

(a) Original appendicitis data set mapped. Pink dots – class 2, green dots – class 1.

(b) Original appendicitis data set classified using rule (6.1).

(c) 108 points on the decision border were generated. Subset S ′T D was defined by the radius r = 0.1 neighborhood,
from which all pairs of points were taken. Blue dots – decision border points.

(d) 110 points on the decision border were generated. Subset S ′T D was defined by the 4 nearest neighbors, from
which all the possible pairs of points were used to find the decision border points.

(e) 107 points on the decision border were generated. Subset S ′T D was defined by the 10 nearest neighbors, from
which only the pairs of points within a radius r = 0.8 neighborhood were taken.

Figure 6.11: Visualization of appendicitis data set with classification rule (6.1).

Generation of new points on lines between vertices of a discretized data space

The technique presented in this section is similar to the one of the previous section, with the
difference that instead of searching the decision border points on the basis of the training data
points, we use new points. Those points are defined e.g. on a regular lattice that “fi lls” the
feature space, then their classes are found using the classifier. The method to generate new
points on lines between vertices of such a discretized data space is as follows:

• First generate a regular lattice of points L that covers completely the area of the feature
space containing data,

• Second, proceed as in previous section but using the vertices of the lattice L instead of
the training data set STD, i.e.:

– select the vertices of L that are close to the decision borders,

– make pairs of selected points that belong to different classes:
{(P1, P2) : C(P1) �= C(P2)},

– find the border point by: moving a point PDB from P1 to P2 (stepping by a small
value ε), and stop when the class of PDB changes from C(P1) to C(P2). Add point
PDB to the decision border set SDB.

Initialization of decision border points for the relative MDS mapping

The points {pDB} representing in the mapping space the decision border points {PDB} can be
initialized before the MDS mapping by a linear interpolation technique. The idea is to compute
the relative position in the data space of point PDB between the two points P1 and P2 from which
it was found, and to transfer this ratio to the mapping space to place {pDB} between p1

DB and
p2

DB. In vector notation, this gives:

−−−−→
p1

TD pDB =

∥∥∥−−−−→P1
TDPDB

∥∥∥∥∥∥−−−−→PDBP2
TD

∥∥∥ ·
−−−−→
pDBp2

T D (6.2)

If the decision border points are mapped individually, then only one point is moved during each
minimization run. Then the number of local minima of the Stress function is very small (there
will be probably a few local minima, as shown in figure 4.6), so that the choice for the initial
position of the mapped point is not crucial.5

These heuristics were primarily designed to the visualization of data sets made of two
classes only, and with a decision border presumably neither strongly bent nor high dimensional
(generally with a quite linear or planar shape). Different other heuristics can be proposed in the
cases where there are more than two classes or with more strongly bent borders, leading to a
varying number of decision border points with respect to the number of data points.

6.2.2 Visualization of classifiers decision borders – Approach 2

In this approach, the points generated in order to visualize a classifier’s decision borders need
to be placed in the neighborhood of and not on the decision borders. The decision border will
be visualized not by the generated points themselves, but it will be visible as the interstice
between areas filled in distinct ways (e.g. different colors if the point are marked by colored
dots). The technique used to find those points is the following:

5When the number of fixed points is not too large (about 100), we obtain very often exactly the same final
positions after linear interpolation or random initializations, but convergence is faster after linear interpolation.

• first select a subset of the database if it is very large in order to reduce the number (and
the complexity) of the decision borders visualized,

• select a subset S′TD = {P′TDi, i = 1, ...,N′TD} of the training data points containing those
that are close to the decision border: these are the training data points around which in a
given neighborhood there are training data points from a different class. This neighbor-
hood can be defined by a given radius or by a given number of nearest neighbors.

• around each selected point P′TDi, generate a given number NG of points from a Gaussian
distribution centered at P′TDi and with equal variances in all dimensions (the value of σ
should be chosen so that the subspace containing the selected points is uniformly filled
with new points),

• use the classifier to label all the points generated in the Gaussian distributions.

This approach was applied to the visualization of decision borders of the classifier called
Incremental Network (IncNet) [72] trained on the women psychometric database, on
which this classifier performs very well (only 8 errors on the 1711 database cases, i.e. 99.53 %
correct classification). It is however interesting to understand why this classifier fails on a few
cases, and to correlate IncNet’s classification probabilities for the proposed and alternative
classes with the distributions of the classes in the data points neighborhoods. A few number
of data points were selected, as well classified with a high level of certainty (points with in-
dices 5, 270 and 554) and points detected as particularly difficult to learn, and consequently
to classify correctly (points with indices 426 and 604). MDS mapping has been used to zoom
into the neighborhood of these data points, and then to visualize the database’s classes distri-
bution in these neighborhoods. Class assignments by IncNet for selected data points and the
corresponding probabilities are presented in Table 6.1.

Data
index

True class Assigned class (probability) Alternative class (probability)

5 norma norma (0.???) ??? (0.???)
554 organika organika (0.826) schizofrenia (0.062)
604 organika schizofrenia (0.544) organika (0.436)
270 nerwica nerwica (0.921) schizofrenia (0.042)
426 nerwica schizofrenia (0.428) nerwica (0.309)

Table 6.1: Classification by neural network (IncNet) of chosen data points from the psy-
chometric database.

Neighborhoods and classes distributions for the corresponding data points are shown in the
following figures 6.12 to 6.16. The colors used to represent the data classes are according to
the legend of figure 6.2 on page 60.

(a) 500-NN, S1 = 0.04621. (b) 200-NN, S1 = 0.05988. (c) 100-NN, S1 = 0.07518.

(d) 50-NN, S1 = 0.06397. (e) 20-NN, S1 = 0.04570. (f) 10-NN, S1 = 0.03693.

(g) 200-NN + 1000 Gaussian points (σ = 1). (h) 200-NN + 1000 Gaussian points (σ = 10).

Figure 6.12: Zooming in the neighborhood of data p5 (black dot) from class norma (norma–
blue, schizofrenia–red, nerwica–green) on plots a to f. IncNet classifier’s decision borders
on plots g and h.

(a) 500-NN, S1 = 0.05555. (b) 200-NN, S1 = 0.02695. (c) 100-NN, S1 = 0.02667.

(d) 50-NN, S1 = 0.02849. (e) 20-NN, S1 = 0.01899. (f) 10-NN, S1 = 0.02318.

(g) 200-NN + 500 Gaussian points (σ = 1). (h) 200-NN + 1000 Gaussian points (σ = 4).

Figure 6.13: Zooming in the neighborhood of data p554 (black dot) from class organika
(organika–light blue, schizofrenia–red, nerwica–green) on plots a to f. IncNet classifier’s
decision borders on plots g and h.

(a) 500-NN, S1 = 0.02904. (b) 200-NN, S1 = 0.03495. (c) 100-NN, S1 = 0.02932.

(d) 50-NN, S1 = 0.03429. (e) 20-NN, S1 = 0.01818. (f) 10-NN, S1 = 0.02056.

(g) 200-NN + 500 Gaussian points (σ = 1). (h) 200-NN + 1000 Gaussian points (σ = 4).

Figure 6.14: Zooming in the neighborhood of data p604 (black dot) from class organika
(light blue) on plots a to f. IncNet classifier’s decision borders on plots g and h.

(a) 500-NN, S1 = 0.05800. (b) 200-NN, S1 = 0.06517. (c) 100-NN, S1 = 0.06487.

(d) 50-NN, S1 = 0.06422. (e) 20-NN, S1 = 0.04080. (f) 10-NN, S1 = 0.04085.

(g) 100-NN + 1000 Gaussian points (σ = 1). (h) 100-NN + 5000 Gaussian points (σ = 8).

Figure 6.15: Zooming in the neighborhood of data p270 (black dot) from class nerwica
(green) on plots a to f. IncNet classifier’s decision borders on plots g and h.

(a) 500-NN, S1 = 0.05980. (b) 200-NN, S1 = 0.05380. (c) 50-NN, S1 = 0.04910.

(d) 20-NN, S1 = 0.03503. (e) 10-NN, S1 = 0.03413. (f) 5-NN, S1 = 0.02449.

(g) 50-NN + 1000 Gaussian points (σ = 1). (h) 200-NN + 1000 Gaussian points (σ = 8).

Figure 6.16: Zooming in the neighborhood of data p426 (black dot) from class nerwica
(green) on plots a to f. IncNet classifier’s decision borders on plots g and h.

Discussion

• Zooming views The views representing the progressive zoomings towards the chosen
data points (figures (a) to (f)) have been manually rotated and flipped when necessary in
order to exhibit continuity during the zooming process. Hence the zooming in the neigh-
borhood of the central black point appears as a continuous process for each of the five
studied points. When taking less and less points in the neighborhood of the central point
(from 500 to 10), the evolution of the final Stress value S1 is not necessarily decreasing.
The final Stress values are rather related to how much the clouds of mapped points can
be embedded in a plane without too much distortions. For example, it can happen that 10
points form roughly a 9–D manifold (as in a simplex) that will be difficult to represent
correctly on a plane, but the same 10 points surrounded by 100 other points form globally
a manifold that can be more easily embedded in a 2–D space (if the 100 points do lie on a
plane). Following Kruskal’s guidelines6 [89], most of the mappings we obtained are sat-
isfying representations of the real 13–dimensional neighborhood relationships. From the
observed Stress values, we conclude e.g. that the figures zooming the neighborhood of
point p604 are much more reliable than the figures of the neighborhood of point p270.

• Decision borders views For each studied point p_i, we generated sets of Nn new points
drawn from multivariate (13–dimensional) Gaussian distributions centred at point p_i
with diagonal covariance matrix and σi values identical in all dimensions. We chose
to build several new sets with parameters (Nn = 500,σi = 1), (Nn = 1000,σi = 4) and
(Nn = 5000,σi = 8), in order to produce areas of different widths. We expected to find
the new data on discs centered at point p_i, with classes separated according to the
distribution of the surrounding basis points. A first observation of the resulting displays
is that the smaller new sets are more concentrated than the larger ones, this was to be
expected. A second conclusion is that when the new points are classified into various
classes, the classes are better separated on the displays for the studied points zoomed in
with low final Stress values. This can be explained by the fact that the new points are
added to less constrained configurations and so they find more easily a good minimum.
The larger new sets are not well represented on the displays which zooms had high final
Stress values. This can be seen on figures 6.12(h) and 6.15(h) where the new mapped
points are distributed in different places, and not all centered around point p_i, probably
due to the presence of local basins of attractions on those displays.
It is interesting to try to correlate, for each analyzed data point, IncNet’s classification
results (and the corresponding probabilities shown in Table 6.1) to the class areas dis-
played around the points on the local zooms. Point p554 is assigned by IncNet to class
organika with high probability, which is confirmed by the neighborhoods in figures
6.13 (e and f), where the black dot lies among blue dots representing class organika.
Point p604 is assigned by IncNet to class schizofrenia with a relatively low
probability, this can be seen in figures 6.14 (e and f) because the black dot is surrounded
by red dots representing class schizofrenia mixed with blue ones. Similarly, the
affectation of point p270 (resp. p426) to class nerwica (resp. schizofrenia) is
confirmed by plot 6.15(e) (resp. 6.16(e)) in which the black dot lies among green (resp.
red) ones.

6From the experience of the authors, a final Stress value S 1 ≤ 0.01 is considered to be good (the configuration
is reliable), a final Stress 0.01≤ S1 ≤ 0.05 is satisfying and S1 ≥ 0.05 is poor.

6.2.3 Conclusion

The different maps we obtained by the proposed procedures show that high dimensional deci-
sion borders visualization is a difficult task. Multidimensional scaling exhibited a good visual-
ization capability in the case of planar decision borders. In the more general case of non linear
decision borders, or when they are embedded in high dimensional data space, the mapping re-
sults are not always satisfying, depending on how much the decision border must be distorted
to be embedded in a plane. It can be advanced that a clear and faithful (that is, with the classes
well separated) 2–dimensional representation of a high dimensional surface with respect to a
high dimensional data set is impossible in the general case. Nevertheless, the obtained displays
convey some information useful to understand a classifier’s behavior in an observed region.
The number of classes represented and the amount of between class overlap on the display give
an insight on the classifier’s discriminancy in the area under consideration. The width of the
displayed decision border, when it is observable, also gives an indication on how much confi-
dent one can be about the quality of the representation of the classes in the considered region,
as well as the final Stress value.

6.3 Visualization of other medical data

6.3.1 Visualization of large data sets

In the context of our work, a large data set is one for which the number of cases or objects
does not allow a direct visualization using MDS mapping, say more than 1500 cases by present
computer memory capacities. The thyroid data set is a public domain data set that has
been made available at the UCI repository by Randolf Werner from Daimler-Benz. It contains
3772 cases with 21 attributes, 15 attributes are binary and 6 are continuous. The problem is
to determine whether a patient referred to the clinic is hypothyroid. Therefore three classes
are built: normal (not hypothyroid, 3488 patients), hyperfunction (hyperthyroid, 191
patients) and subnormal functioning (hypothyroid, 93 patients). The number of cases does
not allow a mapping by MDS in one run. In order to visualize such a data set, several strategies
are possible: i) Select a subset following some heuristic, map this subset using standard MDS
and add to it the remaining data points using relative MDS; ii) Reduce the data set’s size using
a clustering technique and map by standard MDS the cluster centers, to which the data can be
added by relative MDS. We chose to reduce the data set’s size by a point’s selection technique.
The question of whether to standardize the data or not is quite difficult to answer because of
the presence of both binary (0/1) and numerical features (with range different from 1). Firstly,
it comes to mind to standardize the data to set for all the features equal standard deviation, but
it appeared that some binary features have almost all cases valued to zero, except a few ones.
Standardization changes the ones to very high values and creates in this way artificial outliers.
Normalization ... The heuristic to select data was guided by our interest in the visualization of
the decision borders: We selected the points supposed to be close to the decision borders as
follows: keep those points that have in their close neighborhood points belonging to another
class than their own class, and delete the other points. The data set was hence reduced using the
following scheme: For each data point Pi, i = 1, ...,N, if each of the k nearest neighbors of Pi

belong to the same class as point Pi, then point Pi is removed from the data set. This technique
applied for k = 4 allowed to reduce the number of data points in class normal from 3488
to 910, keeping all the points in classes hypothyroid and hyperthyroid unchanged.
Displays of the thyroid data set are shown in figure 6.17.

normal
hypothyroid
hyperthyroid

(a) Visualization of the whole thyroid data set (3772 points) using PCA mapping: The first two eigenvectors
capture 12.12 % and 7.97% of the variance.

(b) Visualization of the reduced thyroid data set (1194 points) using MDS mapping: PCA initialization (S 1 =
0.3981), after 1000 iterations, S1 = 0,0502. The circular traces drawn by points from class normal may be due
to the 15 original binary features involving many identical inter-points distances (As for simplex data set).

Figure 6.17: Visualizations of thyroid data set: the number of points was reduced from 3772
to 1194 (2578 points from class normal that have their 4 nearest neighbors in class normal
were removed from the data set).

6.3.2 Understanding classification results using the k–nearest neighbors
classifier

In this section, we want to check visually the data points that are wrongly classified by the
k–nearest neighbors (k–NN) classifier. The data set named cukrzyca, provided by prof.
Szczepaniuk from the hospital in Łódź, describes 107 diabetic patients classified into two
classes corresponding to two kinds of diabetes disease. Each of the 107 cases is featured with
12 attributes, there is no missing value. Among the 12 features, three are continuous and the
9 other features are binary. It was decided to set to 1 for true and 2 for false. A prepro-
cessing of feature selection was performed on the data to obtain a final classification result as
high as possible. This lead to retain only the 3 features with number 2, 3 and 9. A look at the
107 data points in those 3 dimensions shows that for many of them (40 points), the 3 retained
features are identical. This is not desirable for the MDS algorithm because the Stress gradient
is not defined then due to null distances. To face this difficulty, one can whether leave only
one representative in each group of identical points (possible if all the identical points belong
to the same class), or slightly move the points within the groups so that they become distinct.
This second solution was preferred in this case because there were identical points belonging to
different classes. The identical points were moved randomly within a radius of 0.2 around their
original positions, in order to make them well separated on the plot shown in figure 6.18. It can
be seen that the points are placed quite regularly following a grid. This effect is to be related to
the discrete nature of most of the features. The very low value of final Stress S1 = 2.46e−4 al-
lows us to assume that the neighborhood relationships are well preserved. Each point wrongly
classified by the k–NN classifier (for k = 8) is surrounded by a red circle. For each such point,
it is possible to count the number of nearest neighbors from the same class (within the k nearest
neighbors) and check that those points have a majority of neighbors from the other class. This
allows to “see” why those points are wrongly classified by the k–NN classifier.

class KIT_IIT
class KIT

Figure 6.18: The cukrzyca data set: S1 = 2.46e−4, 42-nd randomly initialized trial.

Chapter 7

Conclusions

7.1 Summary

The main objective of the thesis was to compare two mapping methods from the point of view
of data topology preservation. In this purpose, the mapping methods have been tested on nu-
merous artificial and real life data of different nature. It has been shown that Multidimen-
sional Scaling is to be preferred to Self-Organizing Maps in this matter, despite its limitations.
Improvements designed to face these limitations were proposed and tested, especially in the
domain of Stress minimization. The problem of finding a reliable solution (by a global min-
imization of Stress function) is still crucial and should be investigated in further work. The
Stress function was expressed in a framework general enough to include different approaches.
The solutions retained to enable the visualization of large data sets by MDS (batch mapping
and relative mapping) pushed away the memory requirements and computation time limita-
tions. The increasing memory and calculation capabilities of computers should also make
those limitations less and less significant. The interactive software IMDS allowed exploration
of multivariate data sets and visualization of classifiers decision borders.

7.2 Further developments

In order to enhance the performances and usability of the data visualization software that we
developed, some additional features to the MDS algorithm can be added:

Adapting weights on the distances in MDS

Depending on the purpose of the visualization of a particular data set, it can be helpful to have
the possibility to adjust additional weight values defined for each inter-point distance in order
to force its preservation during mapping.

Visualization of the Minimal Spanning Tree

A further technique which may be useful in making a judgement between different mappings
is that of plotting the links of the minimum spanning tree computed from the D-dimensional
distances onto the final two-dimensional representation. Gower and Ross [62] show how this
technique can highlight distortions in the two-dimensional representation. The Minimal Span-
ning Tree (MST) of a data set is a graph connecting all the data points using the shortest inter-
point distances. This graph gives a kind of spine based picture of the data set structure. The

85

idea of drawing the MST of a data set on its 2D plot has already been applied and implemented,
eg. in the Spinne program [13].

Clustering data before visualization

When large data sets are visualized, it is often necessary to map first a subset and in a second
step add somehow the rest of the data set. The points that constitute the subset can be taken to
be the cluster centers obtained by a clustering method as eg. the k–means. The data set’s MST
can also be used to select a subset. Choosing the Nb highest (ie. closest to the root) vertices of
the MST will lead to a basis subset that best depicts the spine of the data structure in terms of
distances. The remaining data can be added by relative mapping.

Visualization that takes into account the class information

If we desire a display that separates necessarily classes, it may be necessary to incorporate
the class information into the mapping process. Many strategies are possible, as eg. the one
presented in the NeuroScale algorithm (see §3.2.4, page 14). A simple adaptation of the MDS
algorithm that includes class labels is inspired by Fisher’s discriminants and consists in mini-
mizing the following measure:

M =
Mi

Mb
=

∑i(Xi− X̄)(Xi− X̄)
∑i< j(Xi− X̄)(Xj− X̄)

(7.1)

where Mi is a measure of the within class variance for all the classes and Mb is a measure of
the between class variances, and with Di j = ∑

k
wk‖Xk

i −Xk
j ‖2.

Possible improvements to the software

• Multidimensional scaling, as well as self-organizing maps and principal components
analysis, allow multivariate data visualization by dimensionality reduction. The distor-
tions induced by this compression would be smaller when reducing data to 3 dimensions
instead of 2 dimensions. A powerful extension to our software would be the possibility to
visualize 3-dimensional data by allowing its interactive rotation. This extension concerns
only the part of the software managing the display of points, because the MDS mapping
procedures are already able to map data from D-space to any D′-space, with D′ ∈]2,D].

• When zooming in a chosen area of the data space, it happens that the zoomed configura-
tion does not match very well the display of the points before zooming (due to rotation
or reflection). A first idea to avoid this defect is to initialize the mapping of the zoomed
points with their configuration in the display before zooming. A Procrustes analysis (see
§4.2.5) would allow to show the zoomed configuration properly rotated and reflected so
that its points correspond as well as possible to the points from the configuration before
zooming.

• The possibility to interactively move (using the “drag and drop” mouse technique) a
mapped point with simultaneous visualization of the Stress value would be helpful in
situations where one point is evidently surrounded by points from a different class and
seems to be misplaced. This situation may suggest that this point was badly initialized
and is trapped in a local minimum. It may occur that dragging this point, while looking
at the Stress value, would enable the user to place it in an area where it seems to belong
to. This would lead to an interactive point-wise Stress minimization driven by the both
the display and the Stress value.

Appendix A

Optimized step-size for steepest descent
minimization

The purpose of the following expressions is to simplify analytically as much as possible the
expression of the optimized step-size α(k) in order to reduce its calculation complexity.

A.1 Unified expressions for Stress

The unified Stress expressions are introduced in order to have the same calculation framework
in the different cases of standard mapping and relative mapping. This avoids to have different
calculations (and implementations) for each case. We recall that Nt is the total number of
mapped points, Nm is the number of moving points, and we denote N f = Nt−Nm as the number
of points (if any) that are fixed during the mapping process. The general Stress expression of
equation (4.3) for standard mapping is:

S(Y) =
Nt

∑
i< j

wi j ·
(
δi j−di j(Y)

)2
(A.1)

where the normalization factor Fn of equation (4.3) is included in the weights {wi j} assigned
to the distances {di j}. We assume here that these weights are independent from Y, which
simplifies the subsequent derivatives expressions. In the general case of relative mapping, the
Stress expression has been redefined in equation 4.26 as:

Sr(Y) =
Nm

∑
i< j

wi j ·
(
δi j−di j(Y)

)2 +
Nm

∑
i=1

Nt

∑
j=Nm+1

wi j ·
(
δi j−di j(Y)

)2
(A.2)

In order to simplify further calculations on Stress derivatives, we rewrite Stress expressions
(A.1) and (A.2) in the following unique expression using only one index m running over all the
changing distances:

S(Y) =
Nd

∑
m

wab · (δab−dab(Y))2 (A.3)

where Nd is the number of changing distances, that is Nd = Nt(Nt−1)/2 in the case of expres-
sion (A.1) and Nd = Nm(Nm−1)/2 +Nm(Nt −Nm) in the case of expression (A.2), and (a,b)
are indices of the points separated by the mth distance, with a < b. This transfer of indices is
achieved by building two correspondence index vectors a[m] and b[m].

87

A.1.1 Interpoint distances derivatives

The Euclidean distance dab separating points with indices a and b is expressed as:

dab(Y) =

(
dout

∑
z=1

(yaz− ybz)
2

) 1
2

(A.4)

∂dab(Y)
∂ykl

=
1

2dab
· ∂
∂ykl

(
dout

∑
z=1

(yaz− ybz)
2

)
(A.5)

∂dab(Y)
∂ykl

=
1

2dab

dout

∑
z=1

∂
∂ykl

(yaz− ybz)
2 (A.6)

∂dab(Y)
∂ykl

=
1

2dab

dout

∑
z=1

2(yaz− ybz)
∂

∂ykl
(yaz− ybz) (A.7)

Using Kronecker’s symbol δδδi j1, we note ∂
∂ykl

(yaz− ybz) = δδδlz
(
δδδka−δδδkb

)
hence:

∂dab(Y)
∂ykl

=
1

dab

dout

∑
z=1

(yaz− ybz)δδδlz
(
δδδka−δδδkb

)
(A.8)

Noting that δδδlz �= 0 only when z = l, we get:

∂dab(Y)
∂ykl

=
1

dab
(yal− ybl)

(
δδδka−δδδkb

)
(A.9)

A.1.2 Stress gradient expressions

The gradient vector ∇ S of Stress function S is defined as:

∇ S(Y) =
(

∂S(Y)
∂ykl

)
k=1,... ,Nm,l=1,... ,dout

(A.10)

Using Stress expression of equation (A.3):

∂S(Y)
∂ykl

=
∂

∂ykl

(
1
Fn

Nd

∑
m=1

wab · (δab−dab)
2

)
(A.11)

Assuming that Fn and wab are independent from Y, we get:

∂S(Y)
∂ykl

=
1
Fn

Nd

∑
m=1

wab ·2(δab−dab)
(
−∂dab

∂ykl

)
(A.12)

Using expression for ∂dab
∂ykl

of equation (A.9), we get:

∂S(Y)
∂ykl

=
−2
Fn

Nd

∑
m=1

wab

(
δδδka−δδδkb

)(δab−dab

dab

)
(yal− ybl) (A.13)

1Kronecker’s symbol δδδi j should not be confused with the dissimilarity symbol δi j.

A.1.3 Stress Hessian matrix expressions

The Hessian matrix is the matrix of second derivatives defined as:

HS(Y) =
[

∂2S(Y)
∂yi j∂ykl

]
i=1,... ,Nm,k=1,... ,Nm; j=1... ,dout ,l=1,... ,dout

(A.14)

Using Stress gradient expression (A.13):

∂2S(Y)
∂yi j∂ykl

=
∂

∂yi j

(
∂S

∂ykl

)
=

∂
∂yi j

(
−2
Fn

Nd

∑
m=1

wab

(
δδδka−δδδkb

)(δab−dab

dab

)
(yal− ybl)

)
(A.15)

Assuming that Fn and wab are independent from Y , we get:

∂2S(Y)
∂yi j∂ykl

=
−2
Fn

Nd

∑
m=1

wab

(
δδδka−δδδkb

) ∂
∂yi j

((
δab−dab

dab

)
(yal− ybl)

)
(A.16)

∂2S(Y)
∂yi j∂ykl

=
−2
Fn

Nd

∑
m=1

wab

(
δδδka−δδδkb

)(
∂

∂yi j

(
δab−dab

dab

)
(yal− ybl)+

(
δab−dab

dab

)
∂

∂yi j
(yal− ybl)

)
(A.17)

∂2S(Y)
∂yi j∂ykl

=
Nd

∑
m=1

wab

(
δδδka−δδδkb

) −δab
d2

ab

∂dab
∂yi j

(yal− ybl)

+
(

δab−dab
dab

)
∂

∂yi j
(yal− ybl)

 (A.18)

Using expression for ∂dab
∂ykl

of (A.9) and noting ∂
∂yi j

(yal− ybl) = δδδjl
(
δδδia−δδδib

)
, we get:

∂2S(Y)
∂yi j∂ykl

=
−2
Fn

Nd

∑
m=1

wab

(
δδδka−δδδkb

) −δab
d2

ab

1
dab

(
ya j− yb j

)(
δδδia−δδδib

)
· (yal− ybl)

+
(

δab−dab
dab

)
δδδjl
(
δδδia−δδδib

)
 (A.19)

∂2S(Y)
∂yi j∂ykl

=
−2
Fn

Nd

∑
m=1

wab

(
δδδia−δδδib

)(
δδδka−δδδkb

) −δab
d3

ab

(
ya j− yb j

)
(yal− ybl)

+δδδjl
(

δab−dab
dab

)  (A.20)

In a purpose of notation simplification, we define ∆abik =
(
δδδia−δδδib

)(
δδδka−δδδkb

)
, hence:

∂2S(Y)
∂yi j∂ykl

=
−2
Fn

Nd

∑
m=1

wab∆abik

(
−δab

d3
ab

(
ya j− yb j

)
(yal− ybl)+δδδjl

(
δab−dab

dab

))
(A.21)

A.1.4 Optimal step-size expressions

The optimal step-size at iteration k has been expressed in (4.24) as:

α(k) =
∇ S(k)T · ∇ S(k)

∇ S(k)T ·H(k)
S · ∇ S(k)

=
‖∇ S(k)‖2

‖∇ S(k)‖2
H

(A.22)

Let us define αn = ∇ S(k)T · ∇ S(k) and αd = ∇ S(k)T ·H(k)
S · ∇ S(k), so that α(k) = αn/αd . Using

sum notations we have:

αn =
Nm

∑
k=1

dout

∑
l=1

(
∂S

∂ykl

)2

(A.23)

At each iteration k, all the components
(

∂S
∂xl

k

)
,k = 1, ...,Nm, l = 1, ...,dout of the gradient ∇ S(k)

must be calculated in order to get the steepest descent direction, so expression (A.23) of α n

does not need to be further simplified.

αd =
Nm

∑
i=1

dout

∑
j=1

(
∂S
∂yi j

Nm

∑
k=1

dout

∑
l=1

(
∂2S

∂yi j∂ykl
· ∂S
∂ykl

))
(A.24)

The symmetry of this expression and of the Hessian matrix HS will lead to analytic simplifica-
tions for αd . Using second derivatives expressions of equation (A.21):

αd =
Nm

∑
i=1

dout

∑
j=1

 ∂S
∂yi j

Nm

∑
k=1

dout

∑
l=1

−2
Fn

Nd

∑
m=1

wab∆abik

 −δab
d3

ab

(
ya j− yb j

)
(yal− ybl)

+δδδjl
(

δab−dab
dab

)  · ∂S
∂ykl

 (A.25)

We can reorder the sums as follows:

αd =
−2
Fn

Nd

∑
m=1

wab

dout

∑
j=1

Nm

∑
i=1

 ∂S
∂yi j

Nm

∑
k=1

∆abik

dout

∑
l=1

 −δab
d3

ab

(
ya j− yb j

)
(yal− ybl)

+δδδjl
(

δab−dab
dab

)  · ∂S
∂ykl

 (A.26)

Splitting the sum over l into two parts:

αd =
−2
Fn

Nd

∑
m=1

wab

dout

∑
j=1

Nm

∑
i=1

 ∂S
∂yi j

Nm

∑
k=1

∆abik

 −
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂ykl

+
dout

∑
l=1

δδδjl
(

δab−dab
dab

)
∂S

∂ykl


 (A.27)

Noting that δδδjl �= 0 only when j = l, we get:

αd =
−2
Fn

Nd

∑
m=1

wab

dout

∑
j=1

Nm

∑
i=1

 ∂S
∂yi j

Nm

∑
k=1

∆abik

 −
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂ykl

+
(

δab−dab
dab

)
∂S
∂y j

k


 (A.28)

Knowing that a �= b, and that ∆abik = 0 unless (i = a∨ i = b)∧ (k = a∨ k = b), we get:

αd =
−2
Fn

Nd

∑
m=1

wab

dout

∑
j=1



∂S
∂ya j

 −
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂yal
+
(

δab−dab
dab

)
∂S

∂ya j

+
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂ybl
−
(

δab−dab
dab

)
∂S

∂yb j


+ ∂S

∂yb j

 +
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂yal
−
(

δab−dab
dab

)
∂S

∂ya j

−
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂ybl
+
(

δab−dab
dab

)
∂S

∂yb j




(A.29)

αd =
−2
Fn

Nd

∑
m=1

wab

dout

∑
j=1

(∂S
∂ya j
− ∂S

∂yb j

) −
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂yal
+
(

δab−dab
dab

)
∂S

∂ya j

+
dout

∑
l=1

δab
d3

ab

(
ya j− yb j

)
(yal− ybl) ∂S

∂ybl
−
(

δab−dab
dab

)
∂S

∂yb j




(A.30)

αd =
−2
Fn

Nd

∑
m=1

wab

dout

∑
j=1

(∂S
∂ya j
− ∂S

∂yb j

) −δab
d3

ab

(
ya j− yb j

) dout

∑
l=1

(yal− ybl)
(

∂S
∂yal
− ∂S

∂ybl

)
+
(

δab−dab
dab

)(
∂S

∂ya j
− ∂S

∂yb j

)



(A.31)

A.2 Expressions for SStress

Using the same calculus scheme as in section (A.1), similar expressions have been derived for
the SStress function, defined in §4.4.1 as

SS(Y) =
1
Fn

Nt

∑
i< j

wi j ·
(
δ2

i j−d2
i j(Y)

)2
(A.32)

First, the squared distance derivatives

∂d2
ab(Y)
∂ykl

= 2(yal− ybl)
(
δδδka−δδδkb

)
, (A.33)

then the SStress gradient vector

∂SS(Y)
∂ykl

=
−4
Fn

Nd

∑
m=1

wab

(
δδδka−δδδkb

)(
δ2

ab−d2
ab

)
(yal− ybl) (A.34)

and the corresponding Hessian matrix

∂2SS(Y)
∂yi j∂ykl

=
−4
Fn

Nd

∑
m=1

wab∆abik

(
−2
(
ya j− yb j

)
(yal− ybl)+δδδjl (δ2

ab−d2
ab

))
(A.35)

leading to the optimized step-size’s denominator

αd =
−4
Fn

Nd

∑
m=1

wab

dout

∑
j=1

(∂S
∂ya j
− ∂S

∂yb j

) −2
(
ya j− yb j

) dout

∑
l=1

(yal− ybl)
(

∂S
∂yal
− ∂S

∂ybl

)
+
(
δ2

ab−d2
ab

)(∂S
∂ya j
− ∂S

∂yb j

)



(A.36)

Appendix B

Outline of the interactive software

In this appendix, the functionalities of the MDS based interactive software that we developed
as a tool for multivariate data visualization are presented. This interactive software is an MDI
(Multiple Document Interface) type software, which means that several documents (in this case
data sets) can be open and processed simultaneously. The computations related to the mapping
of one data set are run in a separate thread. The various commands available in this software
can be grouped into two categories: Commands applying directly to data sets and commands
related to the mapping operation. This allows us to define two basic classes of objects: the
DataSet class and the Mapping class.

B.1 The DataSet class

Dataset menu: Data set basic operations

• Open Opens a disk file containing multivariate data in the specific data format,

• Pre-processing Various data set pre-processings are available:

– Single points Removes redundancies from the data to keep only single data points,

– Normalize Performs normalization (0,1) of the current data set, so that in each
dimension the midrange is 0 and the range is 1. Let x̃i j be the normalized value of
xi j :

x̃i j =
xi j−midrange x j

range x j
(B.1a)

where:

midrange x j =
max

i
xi j +min

i
xi j

2
(B.1b)

range x j = max
i

xi j−min
i

xi j (B.1c)

– Standardize Performs standardization (0,1) of the current data set, so that in each
dimension the mean is 0 and standard deviation is 1. Let x̃i j be the standardized

92

value of xi j :

x̃i j =
xi j− x̄ j

s j
(B.2a)

where:

x̄ j =
1
N

N

∑
i=1

xi j (B.2b)

s2
j =

1
N−1

N

∑
i=1

(xi j− x̄ j)2 (B.2c)

– Scale features Re-scale, that is multiply by some given factors, some features of
the current data set. This allows to increase or decrease the weight of chosen di-
mensions.1

• Save Saves the current Data set in a file. A dialog box allows to choose which data points
to save, which features and in which format (the specific data format or in a PostScript
file).

• Print Sends the bitmap of the active DataSet’s Table View to the printer,

• Close Closes the current Data set. There is no automatic saving. If the data set is a new
one (e.g. a mapping result that has not been saved yet), it should be saved prior to closing
using the Save option.

Data format

Data file are editable ASCII text files, their names should have a ’.dat’ extension. The first
line contains the data dimension D, each following line describes one data point in the feature
space: the D features followed by the class label. Lines beginning with # are ignored and can
contain comments. Missing data values must be marked as ?
<data_dimension>
<first_feature> ... <last_feature> <class_label> (← First data)
...
<first_feature> ... <last_feature> <class_label> (← Last data)
A ’new line’ character must terminate the last data line.

DataSet object

A small window represents this object with the data set name in the title bar, and containing
two buttons. The multivariate data can be viewed in a table (left button) called Data View in
which each row is a data point (or sample or case). The first column (header Nb) contains
an index number. The following columns are dimensions (or attributes or features), and the
last column contains the class name to which this data belongs. The data can be viewed in
two ways or modes: the Single mode in which only single data points are displayed, and
the Origin mode where all the data are shown as in the original data set. This functionality
is necessary because MDS algorithm can’ t be used on data with identical cases (see §6.3.2).
If two data points have exactly the same features, one of them has to be removed or moved
(that is modified by adding a small random noise) before mapping. The current view mode is

1This is helpful when visualizing a classifier’s behavior on a given data set, for which some dimensions must
be weighted to reach better classification results.

displayed on the bottom Status Bar, on the left side. The Status Bar also shows the number Nbp
of displayed data (single or original, according to current mode). A right mouse Popup Menu
allows to switch between those two modes. After mapping, the data are saved according to
their original number. Data points selection can be done directly on the Table View by clicking
the point header (index). Data dimensions selection can be done directly on the Table View by
a left click on the dimension header (feature name or number). Multivariate data can be viewed
on a scatterplot (right button) called Plot View in which the horizontal axis (X) is initially set
to the first feature and the vertical axis (Y) to the second feature.

Figure B.1: The IMDS software: a data set with its data and plot views.

The choice of which features are represented on the plot view and other parameters con-
trolling the aspect of the plot are made in the Legend dialog box.

The Legend dialog box

The Legend dialog box contains on its top a table describing the classes of the active DataSet.
Each line is for one class, with an index number (header Nb), the current class marker, the class
name and number of points. Three types of point’s marker are available in the Points Markers
Radio Group: a dot (default), the class name or a geometric symbol. Those markers can be
colored or black, as set in the Colors Check Box. The marker’s size can be set using the Marker
size Up-Down Button. The user can change the marker’s color or symbol for one or more class
(by a right mouse click on the marker) to another value from a set of 32 given possibilities. The
plot axes are displayed if the user checks the Show axes Check Box. The features or dimen-
sions that are represented by the X and Y coordinates are set in the two Combo Boxes labeled
X and Y. If the Show center axes Check Box is checked, two axes are displayed in the mean
range of the minima and maxima values on both axis.

Figure B.2: The IMDS software: plot view of a data set and its Legend dialog box.

The Points selection dialog box

A possibility for selecting data points is offered to the user in the following purposes:
a) Just save (in an ASCII or PostScript file) a selected subset of an open data set,
b) Map (or map again) a subset of an open data set. This is necessary when mapping points in
the neighborhood of one data point (dynamic zooming).

This dialog box allows to select or to deselect data points of the active DataSet. Selected
points are represented on the Plot View by a red circle around the dot marker, and by standard
text selection on the Table View. The total number of selected points for the current data set
is displayed on the bottom Status Bars (between parentheses, next to the number of points)
of its Data and Plot Views. Selection is realized by first clicking the appropriate button for
the desired technique (on the left column) and then clicking if necessary on the Plot or Data
View. Similarly, clicking the appropriate button in the right column allows to deselect some
previously selected points. The six different methods available to select or deselect data points
are the following:

• 1 point: one point is selected individually by clicking on its marker on the Plot View or
on its index number (header Nb) in the Data View,

• disc r: the data points located within a disc of given radius r are selected. Set the value
of r in the r = Up-Down Control on the right side of the dialog box and click in the Plot
View to locate the disc center,

• 2D knn: the k nearest neighbors of a given point pc in the 2-space are selected. Set the
value of k in the k = Up-Down Control on the right side of the dialog box and click the
marker of the point pc on the Plot View or its index number (header Nb) in the Data View,

• ND knn: the k nearest neighbors of a given point Pc in the D-space are selected. Set

the value of k in the k = Up-Down Control on the right side of the dialog box and click
the marker of the point pc on the Plot View or its index number (header Nb) in the Data
View,

• rectangle: the data points located inside a rectangle on the Plot View are selected. The
rectangle is defined by left clicking when pointing its upper-left corner and dragging it
down to the bottom-right corner,

• all points: all the data points of the current data set are selected.

Chosen dimensions can be selected as well by a left click on their header in the Data View,
the selected column appears in standard text selection (click again the header of a selected
dimension to deselect it). Selection of dimensions is useful when the user wants to map a data
set using only a restricted number of its features (the selected dimensions), or when he wants
to save only some selected features of an open data set in a new data file.

Finally, all the data points belonging to a chosen class can be selected by left clicking the
chosen class index number (header Nb) in the top array of the Legend dialog box.

The Zooming dialog box

The Zooming dialog allows the user to manipulate the display of points in the Plot View of
a DataSet. This tool is useful in the following situations: a) the user wants to compare
two configurations obtained by different mapping runs by making the two configurations fit as
well as possible to one another (This is a manual Procrustes analysis), b) when some areas of
the viewed data set are densely filled with data points, the user is able to see them enlarged
(zoomed in) and can more easily select some data points in these regions, and c) the user wants
to adjust the view port window to the area interesting him and then save the view as it is in an
Encapsulated PostScript file. The user is offered six different tools to manipulate the plot view,
the first four are manipulation tools, the last two are more properly zooming tools. Zooming is
done by first clicking the appropriate button for the desired technique and then clicking on the
Plot View if necessary:

• Initial display: resets the view to the initial display in which the viewing area fits the
data area. All the data points are visible and fit the entire view port window,

• Pan: translates the viewing area using the “drag and drop” technique, all the display is
translated following the mouse moves,

• Rotate: rotates the viewing area using the “drag and drop” technique, all the display is
rotated around its center following the mouse moves,

• Mirror horizontal: reflects the configuration with respect to a vertical axis at the center
of the current view, just click the button to flip (or flip back) the configuration,

• Mirror vertical: reflects the configuration with respect to an horizontal axis at the center
of the current view, just click the button to flip (or flip back) the configuration,

• Zoom drag: zooms the viewing area using the “drag and drop” technique. Click on the
plot and drag towards the plot center to zoom out, or towards the plot outer borders to
zoom in,

• Zoom window: zooms into a rectangle defined using the “drag and drop” technique (as
for Points Selection within a rectangle).

(a) Data selection dialog box. (b) Data zooming dialog box.

Figure B.3: The IMDS software: Data selection and zooming dialog boxes.

B.2 The Mapping class

The visualization of a multivariate data set is obtained by performing a mapping transformation
on the corresponding DataSet object, the result of which is the creation of a new DataSet
object with the mapped data. This mapping action is realized by executing a function of a
Mapping object. The information needed by this object to perform the mapping operation are
of 3 kinds, they are presented in the following 3 sections.

Mapping Data

Information concerning the data sets involved with this mapping, that is input data set (data
to be mapped), input fixed data set (if relative mapping is performed) and output data set (the
mapped data), are given here. Additionally if some points or features are selected in the input
DataSet object, the user can choose to map only the selected points (or all of them), taking
into account only the selected features (or all of them).

Mapping Options

Mapping options that are independent from the employed mapping method are specified here.
Those general mapping options are:

• the type of initial (or starting) configuration that can be whether: PCA (the first Principal
Components), Random, Multistart, a 2-dimensional extern data set or, in the case of
relative mapping with a fixed data set, by some interpolation,

• the number of dimensions of the output space (default=2),

• the type of mapping: whether a complete mapping (default) or a batch mapping, and the
batch size,

• the mapping method: whether metric NLM (default) or non-metric MDS,

Mapping Parameters

The parameters connected directly and specific to the chosen mapping method (NLM or MDS)
can be set here. The default choice is underlined.

• the type of the minimized Stress function (S1, S2, S3),

• the type of weights assigned to the distances in Stress function (no),

• the type of step-size along the gradient (second order optimized, Kruskal’s heuristic, con-
stant value),

• the type of stopping criterion of the iterative minimization process, that can be any com-
bination of the following 3 criteria: maximal number of iterations, minimal Stress value
reached or maximal Stress decrease,

• the tie approach (first or second, for non-metric MDS only).

(a) Mapping data page. (b) Mapping parameters page. (c) Mapping method page.

Figure B.4: The IMDS software: the Mapping dialog box and its three pages.

Mapping run

When the mapping data, parameters and method are set and validated (OK click in the Mapping
data and parameters window), we get to the Mapping run window, from which we can
start the mapping process. A new data set object is automatically created that contains the
mapped data. If the plot view of this data set is shown, the user will see the evolution of the
configuration during the mapping. The mapping process is ran in a separate thread that has the
charge of the calculations. This thread is started by a click on the Start button, suspended
by a click on the suspend button, resumed by a click on the resume button and terminated
by a click on the terminate button. This gives the user the entire control on the mapping
process. General information about the mapping (mapping data and parameters) is contained
in the Mapping information Text Memo. The evolution of various values (the current
iteration number, the current Stress value, the current absolute Stress value, the elapsed time in
seconds and current step-size) connected to the minimization process is displayed and updated
on-line in the Minimization process Text Memo.

Figure B.5: The IMDS software: Mapping run window and plot view of the mapped data
set.

When the mapping is terminated, the user can close the Mapping run window and pos-
sibly save the mapped data set in a file by clicking the Save button.

Bibliography

[1] Esa Alhoniemi, Jaakko Hollmén, Olli Simula, and Juha Vesanto. Process monitoring
and modeling using the Self-Organizing Map. Integrated Computer Aided Engineering,
6(1):3–14, 1999.

[2] D. F. Andrews. Plots of high dimensional data. Biometrics, 28:125–136, 1972.

[3] B. Baldi and K. Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2:53–58, 1989.

[4] R. E. Barlow, D. J. Bartholomew, J. M. Bremmer, and H. D. Brunk. Statistical Inference
under Order Restrictions. Wiley, New York, 1972.

[5] Anna Bartkowiak and Adam Szustalewicz. Some modern techniques for viewing mul-
tivariate data - a comparative look. In M. A. Kłopotek and M. Michalewicz, editors,
Workshop on Intelligent Information Systems VIII, Ustroń, Poland, pages 7–11, June
14-18 1999.

[6] Wojciech Basalaj. Incremental multidimensional scaling method for database visualiza-
tion. In Proceedings of Visual data Exploration and Analysis VI, SPIE, volume 3643,
pages 149–158, San Jose, California, USA, January 1999.

[7] Hans-Ulrich Bauer, R. Der, and M. Herrman. Controlling the magnification factor of
self-organizing feature maps. Neural Computation, 8:757–771, 1996.

[8] Hans-Ulrich Bauer and Klaus K. Pawelzik. Quantifying the neighborhood preservation
of self-organizing feature maps. IEEE Transaction on Neural Networks, 3(4):570–579,
1992.

[9] Hans-Ulrich Bauer and Thomas Willmann. Growing a hypercubical output space in
a self-organizing feature map. IEEE Transaction on Neural Networks, 8(2):218–226,
1997.

[10] Jean-Pierre Benzécri. L’analyse des données Vol. 2: L’analyse des correspondances.
Dunod, Paris, 1973.

[11] James C. Bezdek and Nikhil R. Pal. An index of topological preservation for feature
extraction. Pattern Recognition, 28(3):381–391, 1995.

[12] Adam Biela. Skalowanie wielowymiarowe w analizach ekonomicznych i behawioral-
nych. Norbertinum, Lublin, 1995.

[13] Bruno Bienfait and Johann Gasteiger. Spinne. Journal of molecular graphics and mod-
eling, 1997.

101

[14] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. GTM: A prin-
cipled alternative to the self-organizing map. Technical report, Aston University, Birm-
ingham, Neural Computing Research Group, April 1996. Available as NCRG/96/015
from http://www.ncrg.aston.ac.uk/.

[15] Gautam Biswas, Anil K. Jain, and Richar C. Dubes. Evaluation of projection algorithms.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(6):701–708,
November 1982.

[16] C.L. Blake and C.J. Merz. UCI repository of machine learning databases. Uni-
versity of California, Irvine, Dept. of Information and Computer Sciences, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[17] Leon Bobrowski and Magdalena Topczewska. Designing of linear visualising trans-
formations for exploration of databases. In Leon Bobrowski, Jan Doroszewski, Etore
Marubini, and Norbert Victor, editors, Statistics and clinical practice, volume 50 of Lec-
ture notes of the ICB seminars, pages 15–19. Polska Akademia Nauk, Międzynarodowy
Centrum Biocebernetyki, Warsaw, June 2000.

[18] S. A. Boorman and H. C. White. Social structure from multiple networks, II. Role
structures. American Journal of Sociology, 81:1384–1446, 1976.

[19] Andreas Buja and Daniel Asimov. Grand tour methods: An outline. In Computer Science
and Statistics, Proceedings of the 17-th Symposium on the Interface, pages 63–67, 1986.

[20] J.N. Butcher, J.R. Graham, C.L. Williams, and Y.Ben Pooth. Development and use for
the MMPI-2. Content Scales. University of Minnesota Press, Minneapolis.

[21] J.N. Butcher and C.L. Williams. Essentials of MMPI-2 and MMPI-A interpretation.
University of Minnesota Press, Minneapolis, 1992.

[22] J. D. Carroll and P. Arabie. Multidimensional scaling. Ann. Rev. Psychol., 31:607–49,
1980.

[23] C. L. Chang and R. C. T. Lee. A heuristic relaxation method for nonlinear mapping in
cluster analysis. IEEE Transactions on Computers, pages 197–200, March 1973.

[24] H. Chernoff. Using faces to represent points in k-dimensional space graphically. Journal
of the American Statistical Association, 68(342):361–368, 1973.

[25] C. H. Coombs. A theory of data. John Wiley & Sons, New York, 1964. Chapters 5, 6
and 7, pp. 80-180.

[26] Marie Cottrell and Eric de Bodt. A Kohonen map representation to avoid misleading in-
terpretations. In Proceedings of the European Symposium on Artificial Neural Networks,
pages 103–110, Bruges, 1996.

[27] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling, volume 59 of Mono-
graphs on Statitics and Applied Probability. Chapman & Hall, London, 1994.

[28] A. P. M. Coxon and C. L. Jones. Multidimensional scaling, volume 1: Exploring Data
Structures, pages 296–339. C. A. O’Muircheartaigh, C. Payne. Wiley, New York, 1977.

[29] A.P.M. Coxon. The user’s guide to MDS. Heinemann Educational Books Ltd, 1982.

[30] S. De Backer, A. Naud, and P. Scheunders. Non-linear dimensionality reduction tech-
niques for unsupervised feature extraction. Pattern Recognition Letters, 19:711–720,
1998.

[31] J. A. de Leeuw. Recent developments in statistics, chapter Applications of convex anal-
ysis to multidimensional scaling, pages 133–145. Amsterdam: North Holland, 1977.

[32] Jan de Leeuw and Willem Heiser. Handbook of statistics, volume 2, chapter Theory of
multidimensional scaling, pages 285–316. North-Holland, krishnaiah P.R. and Kanal
L.N. edition, 1982.

[33] Guido Deboeck and Teuvo Kohonen. Visual exploration in finance with self-organising
maps. Springer Finance, 1998.

[34] P. Demartines. Analyse de données par réseaux de neurones auto-organisés. PhD thesis,
Institut National Polytechnique de Grenoble, November 1994. 202 pages, 84 figures, 6
pages of index, 123 references.

[35] P. Demartines and J. Hérault. Curvilinear component analysis: A self-organizing neural
network for nonlinear mapping of data sets. IEEE Transaction on Neural Networks,
8(1):148–154, January 1997.

[36] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, B, 39(1):1–38, 1977.

[37] T. Deutscher. Issues in data collection and reliability in marketing MDS studies - Impli-
cations for large stimulus sets. Colledge, R.G., Rayner, J.N., eds., 1980.

[38] J. K. Dixon. Pattern recognition with partly missing data. IEEE Transaction on Systems,
Man and Cybernetics, 9:617–621, 1979.

[39] Włodzisław Duch. Quantitative measures for the self-organizing topographic maps.
Open Systems & Information Dynamics, 1995.

[40] Włodzisław Duch and Antoine Naud. Multidimensional scaling and Kohonen’s self-
organizing maps. In Proceedings of the Second Conference "Neural Networks and their
Applications", volume I, pages 138–143, Szczyrk, 1996.

[41] Włodzisław Duch and Antoine Naud. On global self-organizing maps. In Proceedings
of the "4th European Symposium on Artificial Neural Networks", pages 91–96, Bruges,
1996.

[42] Włodzisław Duch and Antoine Naud. Simplexes, multi-dimensional scaling and self-
organized mapping. In Proceedings of the "8th joint EPS-APS International Conference
on Physics Computing ’96", pages 367–370, Kraków, 17-21.9 1996.

[43] O. R. Duda and E. P. Hart. Pattern classification and scene analysis. John Wiley, New
York, 1973.

[44] Witold Dziwnel. In search for the global minimum in problems of features extraction
and selection. In Proceedings of the EUFIT’95, Aachen, Germany, August 1995.

[45] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence
properties and energy functions. Biological Cybernetics, 67:47–55, 1992.

[46] B. Everitt. Graphical techniques for multivariate data. New York, North-Holland, 1978.

[47] R.A. Fisher. The use of multiple measurements on taxonomics problems. Annals of
Eugenics, pages 179-188, 1936.

[48] John A. Flanagan. Self-organisation in SOM. Neural networks, 9(7):1185–1197, 1996.

[49] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Least squares and the
singular value decomposition. Prentice Hall, 1977.

[50] Jerome H. Friedman and John W. Tukey. A projection pursuit algorithm for exploratory
data analysis. IEEE Transactions on Computers, C-23(9):881–890, September 1974.

[51] Bernd Fritzke. Growing cell structure – A self-organizing network for unsupervised and
supervised learning. Technical report, International Computer Science Institute, May
1993.

[52] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Computer Science
and Scientific Computing. Academic Press, second edition, 1990.

[53] Colin Fyfe. Artificial Neural Networks and Information Theory. Department of Com-
puting and Information Systems, University of Paisley, first edition, 1996.

[54] K. R. Gabriel. The biplot graphic display of matrices with application to principal com-
ponents analysis. Biometrika, 58(3):453–467, 1971.

[55] R. T. G. Golledge and A. N. Spector. Comprehending the urban environment: Theory
and practice. Geogr. Anal., 10:403–26, 1978.

[56] G. H. Golub and C. Reinsch. Handbook for automatic computation, volume II - Linear
algebra, chapter Singular Value Decomposition and least squares solutions, pages 134–
151. Springer Verlag, 1971.

[57] Gene H. Golub and Charles F. Van Loan. Matrix computations. John Hopkins series in
the mathematical sciences. The Johns Hopkins University Press, second edition, 1989.

[58] G. J. Goodhill, S. Finch, and T. J. Sejnowski. Quantifying neighbourhood preservation in
topographic mappings. Technical Report INC-9505, Institute for Neural Computation,
November 1995.

[59] Josef Göppert and Wolfgang Rosenstiel. Interpolation in SOM: Improved generalization
by iterative methods. In EC2 & Cie, editor, Proceedings of International Conference on
Artificial Neural Networks ICANN 95, Paris, France, October 1995.

[60] J. C. Gower. Some distance properties of latent root and vector methods used in multi-
variate analysis. Biometrika, 53:325–38, 1966.

[61] J. C. Gower and D. J. Hand. Biplots. Chapman & Hall, 1996.

[62] J. C. Gower and Ross G. J. S. Minimum spanning trees and single linkage cluster anal-
ysis. Applied Statistics, 18:54–64, 1969.

[63] Michael J. Greenacre. Theory and applications of correspondence analysis. Academic
Press, London, 1984.

[64] Patrick Groenen and Willem J. Heiser. The tunneling method for global optimization in
multidimensional scaling. Psychometrika, 61(3):529–550, September 1996.

[65] S. Haykin. Neural networks: A comprehensive foundation. MacMillan College Publish-
ing, New York, 1994.

[66] D. O. Hebb. The organisation of behavior. New York, Wiley, 1949.

[67] W. J. Heiser. A generalized majorization method for least square multidimensional scal-
ing of pseudodistances that may be negative. Psychometrika, 56(1):7–27, 1991.

[68] Hoffman and Joachim M. Buhmann. Multidimensional scaling and data clustering. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information
Processing Systems, volume 7, pages 459–460. Cambridge Mass. MIT Press, 1995.

[69] Timo Honkela. Self-organizing maps in natural language processing. PhD thesis,
Helsinki University of Technology, 1997.

[70] Harold Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology, 24(6):417–441, 1933.

[71] J. Iivarinen, T. Kohonen, J. Kangas, and S. Kaski. Visualizing the clusters on the self-
organizing map. In Tapio Reponen Christer Carlsson, Timo Järvi, editor, Proceedings
of the Conference on Artificial Intelligence Res. in Finland, volume 12, pages 122–126,
Helsinki, Finland, 1994. Finnish Artificial Intelligence Society. Multiple Paradigms for
Artificial Intelligence (SteP94).

[72] N. Jankowski. Ontogenic neural networks and their applications to classification of
medical data. PhD thesis, Department of Computer Methods, Nicholas Copernicus Uni-
versity, Toruń, Poland, 1999.

[73] Samuel Kaski. Data exploration using self-organising maps. PhD thesis, Helsinki Uni-
versity of Technology, 1997.

[74] Samuel Kaski, Jaari Kangas, and Teuvo Kohonen. Bibliography of self-organising maps
(SOM) papers: 1981-1998. Technical report, Neural Computing Surveys, 1998.

[75] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[76] R. W. Klein and R. C. Dubes. Experiments in projection and clustering by simulated
annealing. Pattern Recognition, 22(2):213–220, 1989.

[77] Hansjörg Klock and Joachim M. Buhmann. Multidimensional scaling by deterministic
annealing. In Springer Lecture Notes in Computer Science Venice, editor, Proceedings
of the International Workshop on Energy Minimization Methods in Computer Vision and
Pattern Recognition, EMMCVPR’97, volume 1223, pages 246–260, May 1997.

[78] Teuvo Kohonen. Automatic formation of topological maps of patterns in a self-
organizing system. In Erkki Oja and Olli Simula, editors, Proceedings of Second Scan-
dinavian Conference on Image Analysis, Espoo, Finland, pages 214–220, 1981.

[79] Teuvo Kohonen. Statistical pattern recognition revisited. Elsevier Science Publishers,
North Holland, 1990.

[80] Teuvo Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg Berlin, 1995.

[81] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, and Jorma Laaksonen. SOM_PAK The
self-organizing map program package Version 3.1. Helsinki University of Technology,
Laboratory of Computer and Information Science Rakentajanaukio 2 C, SF-02150 Es-
poo, April 7 1995. Available at ftp://cochlea.hut.fi/pub/som_pak.

[82] Teuvo Kohonen and Helge Ritter. Self-organizing semantic maps. Biological cybernet-
ics, 61:241–254, 1989.

[83] M. A. Kraaijveld, J. Mao, and A. K. Jain. A nonlinear projection method based on
Kohonen’s topology preserving maps. IEEE Transactions on neural networks, 6(3):548–
559, 1995.

[84] M. A. Kramer. Nonlinear principal component analysis using autoassociative neural
networks. AIChE Journal, 37(2):233–243, 1991.

[85] Joseph B. Kruskal. Non metric multidimensional scaling : a numerical method. Psy-
chometrika, 29:115–129, 1964.

[86] Joseph B. Kruskal. Comments on ”A nonlinear mapping for data structure analysis” .
IEEE Trans. on computers, page 1614, December 1971.

[87] Joseph B. Kruskal. Multidimensional scaling and other methods for discovery structure,
volume III, pages 296–339. John Wiley, New York, 1977.

[88] Joseph B. Kruskal and J. Douglas Carroll. Geometrical models and badness-of-fit func-
tions. In Academic Press Pachuri, R. Krishnaiah, editor, Multivariate Analysis II, pages
103–110, 1969.

[89] Joseph B. Kruskal and Myron Wish. Multidimensional Scaling. Sage Publications,
Beverly Hills, CA, 1978.

[90] Joseph B. Kruskal, Forrest W. Young, and Judith B. Seery. How to use KYST A very
flexible program to do multidimensional scaling and unfolding. ATT Bell Labs., 1977.
Fortran software.

[91] D. N. Lawley and A. E. Maxwell. Factor Analysis as a Statistical Method. Butterworth
& Co., London, second edition, 1971.

[92] R. C. T. Lee, J. R. Slagle, and H. Blum. A triangulation method for the sequential
mapping of points from n-space to two-space. IEEE Transactions on Computers, pages
288–292, March 1977.

[93] S. Maital. Multidimensional scaling: Some econometric applications. Journal of Econo-
metrics, 8:33–46, 1978.

[94] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM
News, 23(5):1 & 18, September 1990.

[95] J. Mao and A. K. Jain. Artificial neural networks for feature extraction and multivariate
data projection. IEEE Transaction on Neural Networks, 6(2):296–317, March 1995.

[96] T. Martinetz and K. Schulten. A neural gas network learns topologies. In T. Koho-
nen et al., editor, IEEE International Conference on Artificial Neural Networks, Espoo,
Finland, volume 1, pages 397–407. Elsevier, 1991.

[97] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in neural activity.
Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[98] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine Learning, Neural and
Statistical Classification. Ellis Horwood, New York, 1994.

[99] Filip Mulier and Vladimir Cherkassky. Learning rate schedules for self-organising
maps. In Proceedings of the 12th International Conference on Pattern recognition IAPR,
Jerusalem, Israel, volume II, pages 224–228, 1994.

[100] Antoine Naud. Application of Kohonen’s Self-Organizing Maps to textured image seg-
mentation. In Proceedings of the Symposium "System Modeling Control 8", volume 3:
Artificial Neural Networks and their applications, pages 91–95, Zakopane, 1995.

[101] Antoine Naud and Włodzisław Duch. Interactive data exploration using MDS mapping.
In Proceedings of the Fifth Conference "Neural Networks and Soft Computing", pages
255–260, Zakopane, Poland, 2000.

[102] Heinrich Niemann and Jürgen Weiss. A fast-converging algorithm for nonlinear mapping
of high-dimensional data to a plane. IEEE Transactions on Computers, C-28(2):142–
147, February 1979.

[103] E. Oja. A simplified neuron model as a principal component analyzer. Journal of Math-
ematical Biology, 16:267–273, 1982.

[104] E. Oja. Neural networks, principal components and subspaces. International Journal of
Neural Systems, 1:61–68, 1989.

[105] E. Oja. Principal components, minor components and linear neural networks. Neural
Networks, 5:927–935, 1992.

[106] R. W. Olshavsky, D. B. MacKay, and G. Sentell. Perceptual maps of supermarket loca-
tion. J. Appl. Psychol., 60:80–86, 1975.

[107] Karl Pearson. On lines and planes of closest fit to system of points in space. Phil. Mag.,
2(11):559–572, 1901.

[108] Elżbieta Pekalska, Dick de Ridder, Robert P.W. Duin, and Martin A. Kraaijveld. A new
method of generalizing sammon mapping with application to algorithm speed-up. In
M. Boasson, J.A. Karndorp, JFM Torino, and MG. Vosselman, editors, ASCI’99 Proc.
5th Annual Conference of the Advanced School for Computing and Image, pages 221–
228, Heijen, NL, June 1999.

[109] Vadim Pliner. Metric unidimensional saling and global optimization. Journal of classi-
fication, 13:3–18, 1996.

[110] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
C. Cambridge University Press, Cambridge, second edition, 1992.

[111] J. O. Ramsay. Some statistical approaches to multidimensional scaling data. J. R. Statist.
Soc. A, 145(Part. 3):285–312, 1982.

[112] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge. England, 1996.

[113] H. Ritter and K. Schulten. Convergence properties of Kohonen’s topology conserv-
ing mappings: Fluctuations, stability and dimension selection. Biological Cybernetics,
60:59–71, 1988.

[114] F. Rosenblatt. The perceptron - a perceiving and recognizing automaton. Technical
Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

[115] J. W. Sammon. A nonlinear mapping for data analysis. IEEE Transactions on Comput-
ers, C-18(5):401–409, 1969.

[116] T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural
network. Neural Networks, 2(6):459–473, 1989.

[117] P. Scheunders, S. De Backer, and A. Naud. Non-linear mapping for feature extraction. In
Proceedings of the Joint IAPR International Workshops SSPR’98 and SPR’98, volume
1451 of Lecture Notes in Computer Science, pages 823–830, Sydney, Australia, August
1998. Springer.

[118] Roger N. Shepard. The analysis of proximities: Multidimensional scaling with an un-
known distance function. I. Psychometrika, 27(2):125–140, 1962.

[119] Roger N. Shepard. Metric structures in ordinal data. Journal of Mathematical Psychol-
ogy, 3:287–315, 1966.

[120] Wojciech Siedlecki, Kinga Siedlecka, and Jack Sklansky. Experiments on mapping tech-
niques for exploratory pattern analysis. Pattern Recognition, 21(5):431–438, 1988.

[121] Wojciech Siedlecki, Kinga Siedlecka, and Jack Sklansky. An overview of mapping
techniques for exploratory pattern analysis. Pattern Recognition, 21(5):411–429, 1988.

[122] H. Speckmann, G. Raddatz, and W. Rosenstiel. Relations between generalized fractal
dimensions and Kohonen’s self-organizing maps. In Journées Neurosciences et Sciences
de l’Ingénieur, Paris, May 1994.

[123] Johan Fredrik Markus Svensén. GTM: The generative topographic mapping. PhD thesis,
Aston University, April 1998.

[124] Deborah F. Swayne, Dianne Cook, and Andreas Buja. XGobi: Interactive dynamic data
visualization in the X Window system. AT&T Labs - Research, 1998. Available at
http://www.research.att.com/∼andreas/xgobi/.

[125] Ryszard Tadeusiewicz. Sieci neuronowe. Problemy Współczesnej Nauki i Techniki:
Informatyka. Akademicka Oficyna Wydawnicza RM, Warszawa, 1993.

[126] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric individual differences multidi-
mensional scaling: an alternating least square method with optimal scaling features.
Psychometrika, 42:7–67, 1977.

[127] Yoshio Takane. Multidimensional successive categories scaling: A maximum likelihood
method. Psychometrika, 46(1):9–28, March 1981.

[128] Patrick Thiran and Martin Hasler. Self-organisation of a one-dimensional Kohonen net-
work with quantized weights and inputs. Neural networks, 9(7):1185–1197, 1996.

[129] Michael E. Tipping. Topographic mappings and feed-forward neural networks. PhD
thesis, The University of Aston in Birmingham, February 1996.

[130] W. Tobler and S. Wineburg. A cappadocian speculation. Nature, 231:39–41, 1971.

[131] W. S. Torgerson. Multidimensional scaling. 1. Theory and method. Psychometrika,
17:401–419, 1952.

[132] W. S. Torgerson. Theory and methods of scaling. John Wiley & Sons, New York, 1958.

[133] Takahiro Tsuchiya. A probabilistic multidimensional scaling with unique axes. Japanese
Psychological Research, 38(4):204–211, 1996.

[134] J. W. Tukey. Exploratory data analysis. Addison-Wesley, Reading MA, 1977.

[135] A. Ultsch. Self-organized feature maps for monitoring and knowledge aquisition of a
chemical process. In S. Gielen and B. Kappen, editors, Proceedings of the International
Conference on Artificial Neural Networks (ICANN93), pages 864–867. Springer-Verlag
London, 1993.

[136] M. C. van Wezel, J. N. Kok, and W. A. Kosters. Two neural network methods for mul-
tidimensional scaling. In Proceedings of the European Symposium on Artificial Neural
Networks (ESANN’97), pages 97–102, Bruges, Belgium, 1997.

[137] Juha Vesanto. SOM-based data visualization methods. Intelligent Data Analysis,
3(2):111–126, 1999.

[138] Da-Kai Wang, Roderick B. Urquhart, and James E. S. MacLeod. The equal angle span-
ning tree mapping: A sequential method for projecting from h-space to 2-space. Pattern
Recognition Letters, 2:69–73, 1983.

[139] A. R. Webb. Multidimensional scaling by iterative majorization using radial basis func-
tions. Pattern Recognition, 28(5):753–759, 1995.

[140] H. F. Weisberg. Scaling models for legislative roll-call analysis. Am. Polit. Sci. Rev.,
66:1306–15, 1972.

[141] B. Widrow and M. E. Hoff. Adaptive switching circuits. In IRE WESCON Convention
Record, volume 4, pages 96–104. Reprinted in Anderson and Rosenfeld (1988), 1960.

[142] G. Young and A. S. Householder. Discussion of a set of points in terms of their mutual
distances. Psychometrika, 3(1):19–22, March 1938.

