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Abstract. Sigmoidal or radial transfer functions do not guarantee the best gen-
eralization nor fast learning of neural networks. Families of parameterized trans-
fer functions provide flexible decision borders. Networks based on such transfer
functions should be small and accurate. Several possibilities of using transfer
functions of different types in neural models are discussed, including enhance-
ment of input features, selection of functions from a fixed pool, optimization of
parameters of general type of functions, regularization of large networks with
heterogeneous nodes and constructive approaches. A new taxonomy of transfer
functions is proposed, allowing for derivation of known and new functions by
additive or multiplicative combination of activation and output functions.

1 Introduction

Two most popular feedforward neural networks models, the multi-layer perceptron
(MLP) and the Radial Basis Function (RBF) networks, are based on specific architec-
tures and transfer functions. MLPs use sigmoidal transfer functions, while RBFs use
radial functions, usually Gaussians. Both types of networks are universal approxima-
tors [2]. This is an important, but almost trivial property, since networks using non-
polynomial transfer functions are always universal approximators [20]. The speed of
convergence and the complexity of networks needed to solve a given problem is more
interesting. Approximations of complex decision borders or approximations of mul-
tidimensional mappings by neural networks require flexibility that may be provided
only by networks with sufficiently large number of parameters. This leads to the bias-
variance dilemma [2], since large number of parameters contribute to a large variance
of neural models and small number of parameters increase their bias.

Regularization techniques may help to avoid overparameterization and reduce
variance but training large networks has to be expensive. Moreover, in MLP mod-
els regularization methods decrease the weights forcing the network function to be
more smooth. For some data where sharp, rectangular decision borders are needed,
this may be a problem. Suppose that a simple logical rule:

IF Xy > 0AX2 > 0 THEN Classl ELSE Class2



has been used to create data samples. This distribution may easily be represented by
two hyperplanes, but there is no way to represent it accurately with soft sigmoidal
functions used in MLPs or Gaussian functions used by RBF networks. As a result
for some datasets no change in the learning rule or network architecture will improve
the accuracy of neural solutions. A real-world example is the hypothyroid dataset,
for which the best optimized MLPs still give about 1.5% of error [24] while logical
rules reduce it to 0.64% [9, 5]. Some real world examples showing the differences be-
tween RBF and MLP networks that are mainly due to the transfer functions used were
presented in [12]. Artificial data for which networks using sigmoidal functions (hy-
perplanar, delocalized decision borders) n€¢N) parameters while networks with
localized transfer functions (for example Gaussians) I@@?) parameters, and ar-
tificial data in which the situation is reversed, are presented in [12].

Although all these networks are universal approximators in real applications their
speed of learning and final network complexity may differ significantly. In principle
neural networks may learn any mapping, but the inner ability to learn quickly in a
given case may require flexible “brain modules”, or transfer functions that are appro-
priate for the problem to be solved. Learning and architectures, the main research
topics in neural computing, will not solve this problem. There is “no free lunch™ [14],
i.e. no single learning algorithm is inherently superior to all the others. In real appli-
cations it may be better to find an appropriate model before embarking on a tedious
task of selecting the best architecture and network training.

Selection and/or optimization of transfer functions performed by artificial neurons
have been so far little explored ways to improve performance of neural networks in
complex problems. This paper tries to clarify some of the issues connected with use
of different transfer functions in neural networks. The next section discusses several
ways in which transfer functions may be exploited. The third section contains a new
taxonomy of these functions showing how to systematically generate functions useful
for heterogeneous networks. Conclusions are given in the last section.

2 Theuseof transfer functionsin neural models

Transfer functions may be used in the input pre-processing stage or as an integral part
of the network. In the last case, transfer functions contain adaptive parameters that are
optimized. The simplest approach is to test several networks with different transfer
functions and select the best one. Using heterogenous functions in one network may
give better effects. Starting from a network with several types of transfer function one
may train it, possibly using pruning techniques to drop functions that are not useful.
Constructive methods may also be used, training several candidate nodes and selecting
the one that is the best performer. These possibilities are briefly discussed below.

Pre-processing of inputs. The hidden layer of a neural network maps the inputs
into an image space trying to simplify the task of the perceptron output node, for ex-
ample by creating linearly separable data clusters. Instead of the hidden layer transfer
functions that contain some adaptive parameters one could use arbitrary multivariate
functions to transform inputs trying to achieve similar result.



In thefunctional link (FL) networks of Pao [22] combination of various functions,
such as polynomial, periodic, sigmoidal and Gaussian functions is used. These net-
works were never popular and little is known about their properties. The use of prod-
ucts of pairx; or of higher order products is not very practical for high-dimensional
inputs because the number of such products grows quickly. Functional link networks
have an extra layer with nodes that compute products, periodic functions and other
functions, and that pass the results as inputs to an MLP. For example, in the functional
model Pao recommends orthogonal basis functions. These pre-processing functions
should be regarded rather as filter functions than transfer functions.

Pre-processing may be done independently of the network by basis furtions
(acting on the whole input vectaror on a few elements only) if they do not involve
adaptive parameters. Weighted combination of enhanced inputs is always performed
by the network. However, filter functions that have adaptive parameters should be a
part of the network. To avoid excessive number of inputs one could form a candidate
input node and evaluate its information content using feature-evaluation techniques
[16] before adding new dimension to the input space.

Except for adding filtered inputs to the existing inputs one may renormalize all
input vectors, for example using Minkovsky’s metric. Such input renormalization has
dramatic influence on network decision borders [6]. Adding a new feature based on

sum of square®(x) = y/||x||2,.«— 5 X? creates circular contours of constant value

®(x)=const and renormalizes all enhanced vectotgxo®(x))|| = ||X|| max- If renor-
malization using Minkovsky's metric is desired th@(x) * = [|X||hax— Yi[%i|®, where
[|X]| is now the Minkovsky’s norm.

Selection of functionsfor homogenousnetworks. In this case all functions in neu-

ral network are of the same type, selected from a fixed pool of different transfer func-
tions. For example, several radial functions may be tried in an RBF network and
functions that perform in the best way selected. Other type of functions, such as sepa-
rable transfer functions, may be used in similar architectures [10, 8, 18]. A survey of
many known and some new functions suitable for neural modeling has been published
recently [12]. A systematic taxonomy of these functions has also been presented [13].
Networks based on rational functions, various spline functions, tensor products, cir-
cular units, conical, ellipsoidal, Lorentzian functions and many others were described
in the literature [12].

Unfortunately there are no neural simulators that would allow for easy evalua-
tion and selection of networks with transfer functions of many different types, al-
though some RBF, FSM or IncNet networks may be used to test a few functions.
In the distance-based MLPs (D-MLP) a whole class of transfer functions is intro-
duced [7, 6] by changing the weighted activation in the sigmoidal transfer functions
o(w-x—0) =0o(dg— D(w,Xx)) into a distance function; in particulari¥(w, x) is the
square of Euclidean distance the same type of hyperplanar transfer functions as in the
standard MLP are obtained. Using the Minkovsky's distance fun®igfw, x) taken
to theP power, a family of neural networks with transfer functions parameterized by
o, is obtained. The standard MLP with hyperplanar contours of single neurons cor-
responds t@ = 3 = 2; for other values of parameters quite different decision borders



are provided by these transfer functions. Several families of transfer functions may
be parameterized allowing for selection of networks based on functions that are most
natural for a given data.

Support Vector Machines [3] are used with different kernel functions. Both neural
networks and SVMs are wide margin classifiers. At least part of the SVM success
may be due to the selection of the best kernel for a given data, although for simple
benchmark problems the differences between results obtained with different kernels
(or different transfer functions) may be small.

Heterogenous function networks. Mixed transfer functions within one network
may be introduced in two ways. A constructive method that selects the most promis-
ing function from a pool of candidates in RBF-like architecture and adds it to the
network has been introduced [8, 19]. Other constructive algorithms, such as the cas-
cade correlation [15], may also be used for this purpose. Each candidate node using
different transfer function should be trained and the most useful candidate added to
the network.

In the second approach starting from a network that already contains several types
of functions, such as Gaussian and sigmoidal functions, pruning or regularization tech-
niques are used to reduce the number of functions [19]. Initially the network may be
too complex but at the end only the functions that are best suited to solve the problem
are left. In the ontogenic approach neurons are removed and added during the learning
process [19].

Very little experience with optimization of transfer functions has been gathered.
Neural networks using different transfer functions should use less nodes and thus the
function performed by the network may be more transparent. For example, one hy-
perplane may be used to divide the input space into two classes and one additional
Gaussian function to account for local anomaly. Analysis of the mapping performed
by an MLP network trained on the same data will not be so simple.

3 Transfer functionsand their parameterization

Transfer functions should provide maximum flexibility of their contours with small
number of adaptive parameters. Large networks with simple neurons may have the
same power as small networks with more complex neurons. Recently a detailed sur-
vey of transfer functions has been published [12], containing all relevant references.
Here a new taxonomy of these functions, based on their flexibility, is proposed, start-
ing from the simplest functions and building more flexible functions with reasonable
number of adaptive parameters.

Two functions determine the way signals are processed by neuromactivation
function acting on the input vectdi(x) determines the total signal a neuron receives,
andthe output function o(1 ), operating on scalar activation, determines the scalar out-
put. The composition of the activation and the output function is calledrtmsfer
function o(l(x)). For some transfer functions there is no natural division between
activation and output functions.



A fan-in function, i.e. weighted combination of the incoming signals, is the most
common activation. For neurarconnected to neurons(for j = 1,...,N) sending
signalsx; with the strength of the connectiong the total activation (x;w) is

N
LoGw) = S wix; 1)
J;) ]

wherewp = 0 (threshold) anckg = 1. This activation has biological inspirations and
leads to hyperplanes as contourd ©f) = congt. Statistical methods of classification

may be divided into two broad groups: methods based on discrimination, using hyper-
planes or other hypersurfaces for tessellation of the input space, and methods based
on clusterization, in which similarities are calculated using some kind of a distance
measure. 3 main choices for activation functions are:

e Theinner product I (x;w) OwT -x (as in the MLP networks).

e Thesimilarity-based activationD(x;t) O ||x —t||, used to calculate similarity
of x to a prototype vectar.

e A combination of the two activationsA(x;w,t) (&t w' -x+ B |[x —t]],

The output function o(l) operates on scalar activations and returns scalar values.
Typically a squashing function is used to keep the output values within specified
bounds. The 3 major choices here are: 1. sigmoidal non-local functions; 2. func-
tions localized around a single center; 3. semi-centralized functions that have either
many centers or hard to define centers.

Transfer functions are divided below into 4 categories summarized in Table 1,
starting with the simplest step-like functions, their smooth generalization in form of
radial and sigmoidal functions, moving to multivariate functions with independent pa-
rameters for each dimension and finally reaching the level of the most flexible transfer
functions.

3.1 Step-ikefunctions

Fan-in activation used here leads to hyperplanar contours of transfer functions. Output
function of logical neurons is d@he step function type, known as the Heavisid@(| ; 6)
function:

O(;8)=1ifl >6and0ifl <6 2

The greatest advantage of using logical elements is the high speed of computations
and easy realization in the hardware. Networks of such logical neurons divide the
input space into polyhedral areas.

Multi-step functions allow to realize multi-valued logic. These functions have a
number of thresholds:

)=y for 6 <I<861 3)



With fan-in activation they define a series of parallel hyperplanes. Semi-linear func-
tions:

0 I <8,
§(1;01,82) =9 (1—61)/(62—61) B1<1<86; (4)
1 | >0,

allow to define hyperplanar contours for aBly < | < 8,. Step-like functions with
distance-based activations are also worth considering although they probably have
never been used.

3.2 Sigmoidal transfer functions

Step-like functions have discontinuous derivatives, preventing the use of gradient-
based error minimization training procedurédgmoidal output functions allow to
define popular continuougraded response neurons, for example the logistic output
function:

1

0('/5):1+T,|/s

5)

The constans determines the slope of the logistic function. There are many func-
tions similar ino—shape to the logistic function, forming a broad classigfoidal
functions. Combined with the fan-in functions they give non-local transfer functions.
Combined with other activations (see below, Eq. 12) sigmoidal functions may pro-
duce localized transfer functions. Logistic functions may be replaced by the error
(erf) function, arcus tangent or the hyperbolic tangent functions [12], but since cal-
culation of exponents is much slower than arithmetic operations other functions of
sigmoidal shape may be useful to speed up computations. For example:

sl

=09 = e ©
. _ sl
ss(ls) = [EaE] (7)

3.3 Radial basisfunctions and their approximations

Radial basis functions (RBFs) are used in approximation theory and in pattern recog-
nition [17]. They use the radial coordinate- ||x —t|| as an activation; this coordinate
also forms the simplest RBF function

h(r) =r =||x—t|| =D(x;t). (8)

General multiquadratic functions, thin-plate spline functions
hi(rb) = (b®+r?)~° ©)
ha(r, b) (br)2In(br) (10)



and many other radial functions are non-local. Among localized radial basis functions
Gaussian functions

G(r,b) = e /" (11)

are unique since for Euclidean (and some other) distance functions they are separa-
ble, i.e. equal to products of independent factors for each of the input components.
Logistic function, tanh or simple inverse quadratic and quartic functions approximate
roughly the shape of a Gaussian function:

Gi(r) =2-20(r?);  Gu(r)=1—tankr?);  Gun(r) (12)

T 1y

Radial cubic and quadratic B-spline function were also used to approximate Gaus-
sian function [12].

3.4 Multivariatefunctions

The multivariate Gaussian functions give localized hyperellipsoidal output contours:
N
Gy(x;t,b) = e D*(xitb) — |‘le‘<’““i>2/bi2 (13)
i=

Dispersiond; may be interpreted as scaling factors in the Euclidean distance func-
tion. A similar result is obtained combining the sigmoidal output function (or any
other logistic function) with the quadratic distance function, for example:

_
1+ ePA(xit,b)
ForN-dimensional input space each ellipsoidal unit usesadaptive parameters.

A single unit may also provide more complex contours if more general distance func-
tions are used:

Gs(x;t,b) = 1—a(D(x;t,b)?) = (14)

_ N 1
S arecve o
or with:
Ga(x;t,b) = 1 ! (16)

L+ 3406 —t)2/b7 1+ D2(x;1,)

Large dispersionb; make Gaussian factors for inputsalmost constants within
their variability range, allowing to remove the irrelevant dimensions. Instead of multi-
dimensional Gaussian functions a combination of one-dimensional Gaussians may be
used:

N N
G(x;t,b,v) = Zlvie*o‘i*ti)z/bi2 17)
i=



The advantage of this additive “Gaussian bar" functions is that it make elimina-
tion of irrelevant input variables easier than in the multiplicative multidimensional
Gaussian case. Combination of sigmoidal functions cressge®idal bar function:

N
_ Vi

Lhv) =y ——— 18
a(x;t,b,v) i; PR (18)

The Lorentzian response functions use the squared fan-in activation function to
create contours of non-localized window-type:
1 1
Lix;w) = = (19)
1+12(x;w) 1+(ziN:1WiXi—e)2

with the half-width equal to 1,/5; w|2 Non-local functions of window type may also
be obtained from many other transfer functions, for example:

W(x;w) = & 0w (20)

3.5 Universal transfer functions

Linear terms used to calculatéx; w,0) activations and quadratic terms used in Eu-
clidean distance measures combined together create functions that for some values of
parameters are localized, and for other values non-localized. Ralella[23] used
circular units in their Circular Backpropagation Networks. The output function is a
standard sigmoid while the activation function contains one extra term:

N N

AR W) = Wort- 3 Wi+ WN+1_ZLXi2 (21)

Dorffner [4] proposedonic section transfer functions as a unified framework for
the MLP and RBF networks. Straight lines and ellipses are special cases of conic
sections. From geometrical considerations Dorffner proposes a combination of fan-in
and distance activation functions:

Ac(X;w,t, ) =1 (Xx—t;w) + wD(x —t) (22)

Many other combinations of fan-in and distance functions could also serve as uni-
versal transfer functions. For example, éxi? — BD?) function. The approximated
Gaussian combined with the Lorentzian function also provides an interesting universal
transfer function:

) B 1
CGLl(XJW7t7a7B) - l+ (al (X,W) + BD(X,t))Z (23)
or
1
CoL2(X;w,t,0,B) = (24)

~ 1+al?(x;w) + BD2(x;t)



Bicentral family of transfer functions is formed froMd pairs of sigmoids:

Bi(x;t,b,s) = ﬁo(Ali*) (1-0o(AL)) (25)

whereAlii =s-(x —tith) ando(x) is a logistic function (Eq. 5). Shape adap-
tation of the densityBi(x;t,b,s) is possible by shifting centets rescalingb ands.

Radial basis functions are defined relatively to only one celiter t||, while here
components of two centers,+ b andt; — b;, are used, therefore these functions are
calledbicentral. They use only Bl adaptive parameters, are localized (window-type)
and separable. In contrast to the Gaussian functions a single bicentral function may
approximate rather complex decision borders.

The next step towards even greater flexibility requires rotation of contours pro-
vided by each unit [11, 1]. FulN x N rotation matrix is very hard to parameterize
with N — 1 independent rotation angles. Using transfer functions witiNustl addi-
tional parameters per neuron one can implement rotations defining a product form of
the combination of sigmoids:

N
Ce(x;t,t',r) =[] 0(A3") (1~ o(A3)) (26)

whereA3* = s(x 4 rixiy1 —t +b) andxy 1 = x1. Another solution to this problem
is presented in [12].

3.6 Generalized universal transfer functions

Functions suitable for neural models should form families parametrerized for greatest
flexibility. An extension of the conic activation (22) is defined by:

Ac(x;w,t,b a,B) =al(x—t;w) +BD(x;t,b) (27)

Used with the sigmoidal output function this generalized conical function changes
smoothly from a localized Gaussian (with independent biases) to a soft hyperplane
type. Such functions may be used in heterogenous neural networks [19].

Adding rotations to Ridella function gives another very flexible function:

N
AGR(X;W,S,T) =Wo+_Z (WX + S (% +i%i+1)?) (28)

wherex' = [Xg,... ,XN—1,X1] @andxn;1 = X1.
Bicentral functionswith two independent slopes increase contour flexibility:

Bi2s(x;t,b,s) = ﬁG(AZiJF) (1-0(A2)) (29)

whereA2" = s*(x —t +b;). Using small slopes™ and/ors this generalized bi-
central function may delocalize or stretchlaft and/orright in any dimension and



become semi—localized. This enables half-infinite channel, half-hyperellipsoidal, soft
triangular and many other contour shapes. Each function requNrgsirameters.

The most flexible bicentral function is obtained by combining rotations with two
independent slopes (Fig. 1):

BiR2s(x;t,b,s 1) = ﬁo(A4i+)(l— o(A4)) (30)

whereA4ii = s‘t(x; +riXi+1—t b)), andry,... ,ry_1 define the rotationgn; 1 =0
andayn = 0 is assumed. This transfer function can be local or semi-local and may
rotate in any direction, therefore it is computationally more expensive, udlragiap-

tive parameters per function.

(XA,
Y m‘.,‘.".‘:,:‘,:,

g
(U

Figure 1: A single bicentral transfer functions has very flexible contours.

Transfer functionsare presented in hierarchical order according to their flexibility
in Table 1. The most general families of functions are placed at the top row of the
Table, and the simplest functions are in the bottom row. Activation and output function
type is mentioned for each transfer functivresignates the fun-in activation (1)"
transformed input or weight vector used in this activation gng xw;. D is the
Euclidean distance®® = /3 ((x —ti)/bi)2, andD; = (x —t)/bi. G is the Gaussian,

o is the logistic function]] andy are used to descrilqgoducts of or sum of terms.
Ain description of output referes to the activation function or its component.

Various activations andD, together with localized Gaussian and delocalized sig-
moidal factors, combined in additive or multiplicative way allows for construction of
all transfer functions. For example, the logistic function comes from combination of
activationl and output, while the Gaussian transfer function fr@andG. Combin-
ing these two activation functionst D, and adding output, gives the conic transfer
function. Thus the Table allows for systematic construction of transfer functions that
may be used in neural models.

4 Conclusions

According to the Statlog report [21] comparing many classification methods on 22
real-world datasets, results of RBF and MLP differ significantly. In some cases cross-
validation errors were twice as large using MLP than RBF while for other data the situ-
ation was reversed. Although one may always argue that better initialization, learning



Bicentral (2Slope, Rot2Slope, ... ) (29, 30, [12]) G-Conic (27) G-Ridella(28)

Act: A2-A4, O: M(AI~,AIT,0) Act: | +D° O:0  ActIt+D", O:0

Bicentral (25,26) Conic (22) Ridela(21) CaL1 (23) CaL1 (23)

Act: A1,A3, O: T](Ai",Ai",0)  Act1+D, O:0  ActI"+D", O:0 Act1+D, O: g3z Act|+D, O: g

Multivariate Gaussian (13)  Multivariate Sigmoid (14) 52 (15) 53 (16)

Act: D, O: G Act: DP, O: o Act:Dj, O: [z  Act: D, O ﬁ

Gaussian-bar (17)  Sigmoidal-bar (18)  Lorentzian (19) Window (20)
Act: D°, O: 3G Act: D°, O: 5o Act: 1, O: ﬁ Act: 1, O: G

Gaussian (11) = Radial coordinate(8) = Multiquadratics(9) =~ Thin-plate spline(10)
Act: D, O: G Act: D, O: A Act: D, O: (b?+ D?)® Act: D, O: (bD)?In(bD)

Gaussian Approximations (12)
Act: D, O: Gy = 2—20(r?), Gy = tanh(r?), Gon = —15, splines approx. [12]

1-+4ren
L ogistic (5) Other Sigmoids Sigmoids Approximations (s2,S3) (6-7)
Act:1, O:¢  Act: I, O:tanh,arctan  Act: I, O: O(1) 5 — ©(—I) 2 . 2

=8 1 1rs22’ ST /1912
Heaviside(2) Multistep (3) Semi-linear (4)

Act: I, O: ©(1;6) Act: I, O: ¢(l) Act: |, O:5(1;01,62)
Table 1: Transfer functions hierarchically ordered according to their flexibility. Each gray row contains functions of similar flexibility.

Top rows contain the most flexible functions and bottom rows the simplest. Names of functions and types of activation/output function
functions are given. For detailed description see text.



and architectures will reduce the difference, at least part of that difference may be at-
tributed to different shapes of decision borders (hyperplane vs. ellipsoidal) provided
by their transfer functions.

Most neural networks are based on either sigmoidal or Gaussian transfer func-
tions. We have described several possibilities for introduction of different transfer
functions: selecting functions from a fixed set, introduction of parameterized families
of functions that may be optimized in networks using the same type of nodes (ho-
mogenous networks) or in networks using different nodes (heterogenous networks),
or using constructive algorithms that add and optimize new functions when the data
requires more complex description. Flexibility of a single processing unit, increasing
with the number of adjustable parameters per function, should be balanced with the
number of units needed to solve the problem, decreasing with flexibility of individual
units. The complexity of the training process of the whole network should be min-
imized. The optimal balance between the number and the complexity of units may
strongly depend on problems to be solved.

Although for simple problems it may not matter in some applications selection of
transfer functions may make a difference. When the datasets are small and the di-
mensionality of the feature space relatively large the actual shape of decision borders
is irrelevant and even logical rules or decision trees, dividing the feature space into
hyperboxes, may be sufficient. The more data samples are provided the more inade-
guacy of the models will show up, and the need for flexible contours approximating
real distribution of data will become apparent. We have presented here a taxonomy
of functions suitable for neural network models, starting from the simplest step-like
functions and proceeding to the most flexible functions judiciously parameterized.
For mutidimensional problems these functions should be much more attractive than
polynomials, improving upon convergence of sigmoidal and Gaussian functions.

Investigation of the role of transfer functions has just started and little is known
about merits of some transfer functions presented in this paper. Many of them have
never been used in neural networks so far and almost none are available in public
domain neural software. Very few experiments with heterogeneous transfer functions
in single networks have been made. Training algorithms have developed to the point
where returns may be diminishing, while investigation of the neural transfer functions
still hide unexplored possibilities.
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