
Meta-learning: searching in the model space.

Włodzisław Duch and Karol Grudzi´nski
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toru´n, Poland.
WWW: http://www.phys.uni.torun.pl/kmk

Abstract

There is no free lunch, no single learning algorithm that will
outperform other algorithms on all data. In practice differ-
ent approaches are tried and the best algorithm selected. An
alternative solution is to build new algorithms on demand
by creating a framework that accommodates many algo-
rithms. The best combination of parameters and procedures
is searched here in the space of all possible models belong-
ing to the framework of Similarity-Based Methods (SBMs).
Such meta-learning approach gives a chance to find the best
method in all cases. Issues related to the meta-learning and
first tests of this approach are presented.

1 Introduction.

The ‘no free lunch’ theorem [1] states that there is no sin-
gle learning algorithm that is inherently superior to all the
others. The back side of this theorem is that there are al-
ways some data on which an algorithm that is evaluated
give superior results. Neural and other computational intel-
ligence methods are usually tried on a few selected datasets
on which they work well. A review of many approaches to
classification and comparison of performance of 20 meth-
ods on 20 real world datasets has been done within theStat-
Log European Community project [2]. The accuracy of 24
neural-based, pattern recognition and statistical classifica-
tion systems has been compared on 11 large datasets by Ro-
hwer and Morciniec [3]. No consistent trends have been ob-
served in the results of these large-scale studies. Frequently
simple methods, such as the nearest neighbor methods orn-
tuple methods, outperform more sophisticated approaches
[3].

In real world applications a good strategy is to find the best
algorithm that works for a given data trying many different
approaches. This may not be easy. First, not all algorithms
are easily available, for example there is no research or com-
mercial software for some of the best algorithms used in the
StatLog project [2]. Second, each program requires usually
a different data format. Third, programs have many param-
eters and it is not easy to master them all. Our strategy is
to use a framework for Similarity-Based Methods (SBM)
introduced recently [4, 5]. The meta-learning approach de-

scribed here involves a search for the best model in the space
of all models that may be generated within SBM framework.
Simplest model are created at the beginning and new types
of parameters and procedures are added, allowing to ex-
plore more complex models. Constructive neural networks
as well as genetic procedures for selection of neural archi-
tectures increase model complexity by adding the same type
of parameters, generating different models within a single
method. Meta-learning requires creation of models based
on different methods, introducing new types of parameters
and procedures.

In the next section we will briefly introduce the SBM frame-
work, explain which methods may be generated within
SBM, present the meta-learning approach used to select the
best method and describe our preliminary experiences an-
alyzing a few datasets. Conclusions and plans for future
developments close this paper. Although the meta-learning
approach is quite general this paper is focused on classifica-
tion methods.

2 A framework for meta-learning

An algorithm, or a method, is a certain well-defined com-
putational procedure, for example an MLP neural network
or k-NN method. A model is an instance of a method
with specific values of parameters. A framework for meta-
learning should allow for generation and testing of models
derived from different methods. It should be sufficiently
rich to accommodate standard methods. The SBM frame-
work introduced recently [4, 5] seems to be most suitable for
the purpose of meta-learning. It covers all methods based
on computing similarity between the new case and cases
in the training library. It includes such well-known meth-
ods as thek–Nearest Neighbor (k-NN) algorithm and it’s
extensions, originating mainly from machine learning and
pattern recognition fields, as well as neural methods such
as the popular multilayer perceptron networks (MLP) and
networks based on radial–basis functions (RBF).

Methods that belong to the SBM are based on specific
parameterization of thep(Ci|X;M) posterior classification
probability, where the modelM involves various proce-
dures, parameters and optimization methods. Instead of fo-

cusing on improving a single method a search for the best
method belonging to the SBM framework should select op-
timal combination of parameters and procedures for a given
problem.

Below N is the number of features,K is the number of
classes, vectors are in bold faces while vector components
are in italics. The following steps may be distinguished in
the supervised classification problem based on similarity es-
timations:
1) Given a set of objects (cases){O p}, p = 1..n and their
symbolic labelsC(Op), define useful numerical features
X p

j = Xj(Op), j = 1...N characterizing these objects. This
preprocessing step involves computing various characteris-
tics of images, spatio-temporal patterns, replacing symbolic
features by numerical values etc.
2) Find a measure suitable for evaluation of similarity or
dissimilarity of objects represented by vectors in the feature
space,D(X,Y).
3) Create a reference (or prototype) vectorsR in the fea-
ture space using the similarity measure and the training set
T = {Xp} (a subset of all cases given for classification).
4) Define a function or a procedure to estimate the proba-
bility p(Ci|X;M), i = 1..K of assigning vectorX to classCi.
The set of reference vectors, similarity measure, the feature
space and procedures employed to compute probability de-
fine the classification modelM.
5) Define a cost functionE[T ;M] measuring the perfor-
mance accuracy of the system on a training setT of vec-
tors; a validation setV composed of cases that are not used
directly to optimize modelM may also be defined and per-
formanceE[V ;M] measuring generalization abilities of the
model assessed.
6) Optimize the modelMa until the cost functionE[T ;Ma]
reaches minimum on the setT or on the validation set
E[V ;Ma].
7) If the model produced so far is not sufficiently accu-
rate add new procedures/parameters creating more complex
modelMa+1.
8) If a single model is not sufficient create several local

modelsM(l)
a and use an interpolation procedure to select the

best model or combine results creating ensembles of mod-
els.

All these steps are mutually dependent and involve many
choices described below in some details. The final classi-
fication modelM is build by selecting a combination of all
available elements and procedures. A general similarity-
based classification model may include all or some of the
following elements:

M = {X(O),∆(·, ·),D(·, ·),k,G(D),{R},{pi(R)},E[·],
K(·),S(·)}, where:
X(O) is the mapping defining the feature space and select-
ing the relevant features;

∆ j(Xj;Yj) calculates similarity ofX j, Yj features,j = 1..N;
D(X,Y) = D({∆ j(Xj;Yj)}) is a function that combines sim-
ilarities of features to compute similarities of vectors; if the
similarity function selected has metric properties the SBM
may be called the minimal distance (MD) method.
k is the number of reference vectors taken into account in
the neighborhood ofX;
G(D) = G(D(X,R)) is the weighting function estimating
contribution of the reference vectorR to the classification
probability ofX;
{R} is a set of reference vectors created from the set of
training vectorsT = {Xp} by some selection and optimiza-
tion procedure;
pi(R), i = 1..K is a set of class probabilities for each refer-
ence vector;
E[T ;M] orE[V ;M] is a total cost function that is minimized
at the training stage; it may include a misclassification risk
matrixR (Ci,Cj), i, j = 1..K;
K(·) is a kernel function, scaling the influence of the error,
for a given training example, on the total cost function;
S(·) is a function (or a matrix) evaluating similarity (or more
frequently dissimilarity) of the classes; if class labels are
soft or are if they are given by a vector of probabilitiesp i(X)
classification task is in fact a mapping.S(Ci,Cj) function
allows to include a large number of classes, “softening” the
labeling of objects that are given for classification.

Various choices of parameters and procedures in the con-
text of network computations leads to a large number of
similarity-based classification methods. Some of these
models are well known and some have not yet been used.
We have explored so far only a few aspects of this frame-
work, describing various procedures of feature selection,
parameterization of similarity functions for objects and sin-
gle features, selection and weighting of reference vectors,
creation of ensembles of models and estimation of classifi-
cation probability using ensembles, definitions of cost func-
tions, choice of optimization methods, and various network
realizations of the methods that may be created by combi-
nation of all these procedures [5, 6, 7, 8]. A few methods
that may be generated within the SBM framework are men-
tioned below.

The k-NN model p(Ci|X;M) is param-
eterized byp(Ci|X;k,D(·),{X}}), i.e. the whole training
dataset is used as the reference set,k nearest prototypes are
included with the same weight, and a typical distance func-
tion, such as the Euclidean or the Manhattan distance, is
used. Probabilities arep(Ci|X;M) = Ni/k, whereNi is the
number of neighboring vectors belonging to the classC i.
The most probable class is selected as the winner. Many
variants of this basic model may be created. Instead of en-
forcing exactlyk neighbors the radiusr may be used as an
adaptive parameter. Using several radial parameters and the

hard-sphere weighting functions Restricted Coulomb En-
ergy (RCE) algorithm is obtained [9]. Selection of the pro-
totypes and optimization of their position leads to old and
new variants of the LVQ algorithms [10]. Gaussian clas-
sifiers, fuzzy systems and RBF networks are the result of
soft-weighting and optimization of the reference vectors.
Neural-like network realizations of the RBF and MLP types
are also special cases of this framework [6].

The SBM framework is too rich that instead of exploring all
the methods that may be generated within it an automatic
search for the best method and model is needed: a meta-
learning level.

3 Meta-learning issues

Parameters of each model are optimized and a search is
made in the space of all modelsMa for the simplest and
most accurate model that accounts for the data. Opti-
mization should be done using validation sets (for example
in crossvalidation tests) to improve generalization. Start-
ing from the simplest model, such as the nearest neighbor
model, qualitatively new “optimization channel” is opened
by adding the most promising new extension, a set of pa-
rameters or a procedure that leads to greatest improvements.
Once the new model is established and optimized all exten-
sions of the model are created and tested and another, better
model is selected. The model may be more or less complex
than the previous one (for example, feature selection or se-
lection of reference vectors may simplify the model). The
search in the space of all SBM models is stopped when no
significant improvements are achieved by new extensions.

In the case of the standardk-NN, the classifier is used with
different values ofk on a training partition using leave-one-
out algorithm and applied to the test partition. The predicted
class is computed on the majority basis. To increase the
classification accuracy one may first optimizek,(k1 ≤ k ≤
k2) and selectm ≤ k2− k1 best classifiers for an ensemble
model. In the case of weightedk-NN eitherk is optimized
first and then best models created optimizing all weights, or
best models are selected after optimization for a number of
k values (a more accurate, but costly procedure).

Selecting a subset of best models that should be included in
an ensemble is not an easy task since the number of possi-
bilities grows combinatorially and obviously not all subsets
may be checked. A variant of the best-first search (BFS)
algorithm has been used for this selection. We have already
used the BFS technique for the optimization of weights and
for selection of the best attributes [7, 8]. BFS algorithm
can be used for majority voting of models derived from
weighted-NN method based on minimization, or based on
standardk-NN with differentk, or for selection of an opti-
mal sequence of any models.

The evaluation functionC(Ml) returns the classification ac-
curacy of the modelMl on a validation set; this accuracy
refers to a single model or to an ensemble of models se-
lected so far. LetN denote the initial number of models
from which selection is made andK the number of mod-
els that should be selected. The model sequence selection
algorithm proceeds as follows:

1. Initialize:

(a) Create a pool ofM initial models, M =
{Ml}, l = 1. . .M.

(b) Evaluate all initial models on the validation set,
arrange them in a decreasing order of accuracy
Ca(Mi) ≥Ca(Mj) for i > j.

(c) Select the best modelM1 from theM pool as
the reference.

(d) Remove it from the pool of models.

2. Repeat until the pool of models is empty:

(a) For each modelMl in the pool evaluate its per-
formance starting from the current reference
model.

(b) Select the reference +Ml model with highest
performance and use it as the current reference;
if several models have similar performance se-
lect the one with lowest complexity.

(c) If there is no significant improvement stop and
return the current reference model; otherwise
accept the current reference model +Ml as the
new reference.

(d) Remove theMl model from the pool of available
models.

At each step at mostM − L sequences consisting ofL =
M −1..1 models are evaluated. Frequently the gain in per-
formance may not justify additional complexity of adding
a new model to the final sequence. The result of this al-
gorithm is a sequence of models of increasing complexity,
without re-optimization of previously created models. This
“best-first” algorithm finds a sequence of models that give
the highest classification accuracy on validation partition.
In case ofk-NN-like models, calculations may be done on
the training partition in the leave-one-out mode instead of
the validation partition.

The algorithm described above is prone to local minima,
as any “best-first” or gradient-based algorithm. The beam
search algorithm for selection of the best sequence of mod-
els is more computationally expensive but it has a better
chance to find a good sequence of models. Since the SBM

scheme allows to add many parameters and procedures, new
models may also be created on demand if adding models
created so far does not improve results. Some model opti-
mizations, such as the minimization of the weights of fea-
tures in the distance function, may be relatively expensive.
Re-optimization of models in the pool may be desirable
but it would increase the computational costs significantly.
Therefore we will investigate only the simplest “best-first”
sequence selection algorithm, as described above.

4 Numerical experiments

We have performed preliminary numerical tests on several
datasets. The models taken into account include optimiza-
tion of k, optimzation of distance function, feature selection
and optimization of the weights scaling distance function:

D(X,Y)α =
n

∑
i=1

si|Xi −Yi|α (1)

At present onlyα = 1,2 is considered (Euclidean and Man-
hattan weighted functions), and two other distance function,
Chebyschev and Camberra [6], but full optimization ofα
should soon be added. Various methods of optimization
may be used but we have implemented only the simplex
method which may lead to the weighted models with rel-
atively large variance. The goal of further search for the
best model should therefore include not only accuracy but
also reduction of variance, i.e. stabilization of the classifier.

4.1 Monk problems
The artificial dataset Monk-1 [11] is designed for rule-based
symbolic machine learning algorithms (the data was taken
from the UCI repository [12]). The nearest neighbor algo-
rithms usually do not work well in such cases. 6 symbolic
features are given as input, 124 cases are given for train-
ing and 432 cases for testing. We are interested here in the
performance of the model selection procedures.

The meta-learning algorithm starts from the reference
model, a standardk-NN, with k = 1 and Euclidean func-
tion. The leave-one-out training accuracy is 76.6% (on test
85.9%). At the first level the choice is: optimization ofk,
optimization of the type of similarity function, selection of
features and weighting of features. Results are summarized
in the Table below. Feature weighting (1, 1, 0.1, 0, 0.9, 0),
implemented here using a search procedure with 0.1 quanti-
zation step, already at the first level of search for the best ex-
tension of the reference model achieves 100% accuracy on
the test set and 99.2%, or just a single error, in the leave-one-
out estimations on the training set. Additional complexity
may not justify further search. Selection of the optimal
distance for the weightedk-NN reference model achieves
100% on both training and the test set, therefore the search
procedure is stopped.

Table 1: Results for the Monk-1 problem withk-NN as reference
model.

Method Acc. Train % Test %

ref = k-NN, k=1, Euclidean 76.6 85.9
ref + k=3 82.3 80.6
ref + Camberra distance 79.8 88.4
ref + feature selection 1, 2, 5 96.8 100.0
ref + feature weights 99.2 100.0
ref = k-NN, Euclid, weights 99.2 100.0
ref + Camberra distance 100.0 100.0

In the Monk 2 problem the best combination sequence of
models wask-NN with Camberra distance function, giv-
ing the training accuracy of 89.9% and test set accuracy of
90.7%. In the Monk 3 case weighted distance with just 2
non-zero coefficients gave training accuracy of 93.4% and
test result of 97.2%.

4.2 Hepatobiliary disorders
The data contain four types of hepatobiliary disorders found
in 536 patients of a university affiliated Tokyo-based hospi-
tal. Each case is described by 9 biochemical tests and a sex
of the patient. The same 163 cases as in [13] were used
as the test data. The class distribution in the training parti-
tion is 34.0%, 23.9%, 22.3% and 19.8%. This dataset has
strongly overlapping classes and is rather difficult. With 49
crisp logic rules only about 63% accuracy on the test set
was achieved [14], and over 100 fuzzy rules based on Gaus-
sian or triangular membership functions give about 75-76%
accuracy.

The referencek-NN model with k=1, Euclidean distance
function gave 72.7% in the leave-one-out run on the training
set (77.9% on the test set). Although only the training set re-
sults are used in the model search results on the test set are
given here to show if there is any correlation between the
training and the test results. The search for the best model
proceeded as follows:

First level

1. Optimization ofk finds the best result withk=1, ac-
curacy 72.7% on training (test 77.9%).

2. Optimization of the distance function gives train-
ing accuracy of 79.1% with Manhattan function (test
77.9%).

3. Selection of features removed feature Creatinine
level, giving 74.3% on the training set; (test 79.1%).

4. Weighting of features in the Euclidean distance func-

tion gives 78.0% on training (test 78.5%). Final
weights are [1.0, 1.0, 0.7, 1.0, 0.2, 0.3, 0.8, 0.8, 0.0].

The best training result 79.1% (although 77.9% is not the
best test result) is obtained by selecting the Manhattan func-
tion, therefore at thesecond level this becomes the refer-
ence model:

1. Optimization ofk finds the best result withk=1, ac-
curacy 72.7% on training (test 77.9%).

2. Selection of features did not remove anything, leaving
79.1% on the training (test 77.9%).

3. Weighting of features in the Manhattan distance func-
tion gives 80.1% on training (final weights are [1.0,
0.8, 1.0, 0.9, 0.4, 1.0, 1.0, 1.0, 1.0]; (test 80.4%).

At the third level weighted Manhattan distance giving
80.1% on training (test 80.4%) becomes the reference
model and since optimization ofk nor the selection of fea-
tures does not improve the training (nor test) result this be-
comes the final model. For comparison results of several
other systems (our calculation or [15]) on this data set are
given below:

Table 2: Results for the hepatobiliary disorders. Accuracy on the
training and test sets.

Method Training set Test set
Model optimization 80.1 80.4
FSM, Gaussian functions 93 75.6
FSM, 60 triangular functions 93 75.8
IB1c (instance-based) – 76.7
C4.5 decision tree 94.4 75.5
Cascade Correlation – 71.0
MLP with RPROP – 68.0
Best fuzzy MLP model 75.5 66.3
LDA (statistical) 68.4 65.0
FOIL (inductive logic) 99 60.1
1R (rules) 58.4 50.3
Naive Bayes – 46.6
IB2-IB4 81.2-85.5 43.6-44.6

The confusion matrix is:




25 3 2 3
5 40 4 2
4 1 26 4
2 0 2 40


 (2)

Since classes strongly overlap the best one can do in such
cases is to identify the cases that can be reliable classified
and assign the remaining cases to pairs of classes [16].

4.3 Ionosphere data
The ionosphere data was taken from UCI repository [12]. It
has 200 vectors in the training set and 150 in the test set.
Each data vector is described by 34 continuous features and
belongs to one of two classes. This is a difficult dataset for
many classifiers, such as decision trees: it is rather small,
the number of features is quite large, the distribution of vec-
tors among the two classes in the training set is equal, but in
the test set only 18% of the vectors are from the first class
and 82% from the second. Probably for this dataset discov-
ery of an appropriate bias on the training set is not possible.

The referencek-NN model with k=1, Euclidean distance
function gave 86.0% (92.0% on the test set). The search
for the best model proceeded as follows:

First level

1. Optimization ofk finds the best result withk=1, ac-
curacy 86.0% on training (test 92.0%).

2. Optimization of the distance function gives train-
ing accuracy of 87.5% with Manhattan function (test
96.0%).

3. Selection procedures leaves 10 features and gives
92.5% on the training set; (test 92.7%).

4. Weighting of features in the Euclidean distance func-
tion gives 94.0% on training (test 87.3%); only 6 non-
zero weights are left.

The best training result 94.0% is obtained from feature
weighting. Unfortunately this seems to be sufficient to over-
fit the data – due to the lack of balance between the training
and the test set overtraining may be quite easy. Thesecond
level search starts from:

1. Optimization ofk does not improve the training re-
sult.

2. Optimization of the distance function gives 95.0%
with Manhattan function (test 88.0%).

3. Selection of features did not change the training re-
sult.

All further combinations of models reduce the training set
accuracy. It is clear that there is no correlation between the
results on the training and on the test set in this case.

5 Discussion

Meta-learning combined with the framework of similarity-
based methods leads to search in the space of models de-
rived from algorithms that are created by combining differ-
ent parameters and procedures defining building blocks of
learning algorithms. Although in this paper only classifica-
tion problems were considered the SBM framework is also
useful for associative memory algorithms, pattern comple-
tion, missing values [5], approximation and other computa-
tional intelligence problems.

In this paper first meta-learning results have been presented.
Preliminary results with only a few extensions to the refer-
encek-NN model illustrated on the Monk problems, hepa-
tobiliary disorders and the ionosphere data how the search
in the model space automatically leads to more accurate so-
lutions. Even for a quite difficult data it may be possible
to find classification models that achieve 100% accuracy on
the test set. For hepatobiliary disorders a model with highest
accuracy for real medical data has been found automatically.
For some data sets, such as the ionosphere, there seems to
be no correlation between the results on the training and on
the test set. Although the use of a validation set (or the use
of the crossvalidation partitions) to guide the search process
for the new models should prevent them from overfitting
the data, at the same time enabling them to discover the
best bias for the data other ways of model selection, such
as the minimum description length (cf. [1]), should be in-
vestigated.

Similarity Based Learner (SBL) is a software system de-
veloped in our laboratory that systematically adds various
procedures belonging to the SBM framework. Methods im-
plemented so far provide many similarity functions with dif-
ferent parameters, include several methods of feature selec-
tion, methods that weight attributes (based on minimization
of the cost function or based on searching in the quantized
weight space), methods of selection of interesting proto-
types in the batch and on-line versions, and methods im-
plementing partial-memory of the evolving system. Many
optimization channels have not yet been programmed in our
software, network models are still missing, but even at this
preliminary stage results are very encouraging.

Acknowledgments: Support by the Polish Committee for
Scientific Research, grant no. 8 T11C 006 19, is gratefully
acknowledged.

References
[1] R.O. Duda, P.E. Hart, D.G. Stork, Pattern classifica-
tion. 2nd ed, John Wiley and Sons, New York (2001)

[2] D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine
learning, neural and statistical classification. Elis Horwood,
London (1994)

[3] R. Rohwer, M. Morciniec, A Theoretical and Exper-
imental Account of n-tuple Classifier Performance. Neural
Computation8 (1996) 657–670

[4] W. Duch, A framework for similarity-based classi-
fication methods. In: Intelligent Information Systems VII,
Malbork, Poland (1998) 288-291

[5] W. Duch, R. Adamczak, G.H.F. Diercksen, Classi-
fication, Association and Pattern Completion using Neural
Similarity Based Methods. Applied Mathematics and Com-
puter Science10 (2000) 101–120

[6] W. Duch, Similarity-Based Methods. Control and
Cybernetics4 (2000) xxx-yyy

[7] W. Duch, K. Grudziński, Weighting and selection of
features in Similarity-Based Methods. In: Intelligent Infor-
mation Systems VIII, Ustro´n, Poland (1999) 32-36

[8] W. Duch, K. Grudziński, Search and global mini-
mization in similarity-based methods. In: Int. Joint Con-
ference on Neural Networks (IJCNN), Washington (1999)
paper no. 742

[9] D.L. Reilly, L.N. Cooper, C. Elbaum, A neural model
for category learning. Biological Cybernetics45 (1982) 35–
41

[10] T. Kohonen, Self-organizing maps. Springer-Verlag,
Berlin Heidelberg New York (1995)

[11] S.B. Thrun et al.: The MONK’s problems: a
performance comparison of different learning algorithms.
Carnegie Mellon University, Technical Report (1991)
CMU-CS-91-197

[12] C.J. Mertz, P.M. Murphy, UCI repository of machine
learning datasets,
http://www.ics.uci.edu/AI/ML/MLDBRepository.html

[13] Y. Hayashi, A. Imura, K. Yoshida, Fuzzy neural ex-
pert system and its application to medical diagnosis. In: 8th
International Congress on Cybernetics and Systems, New
York City 1990, pp. 54-61

[14] Duch W, Adamczak R, Grabczewski K, A new
methodology of extraction, optimization and application of
crisp and fuzzy logical rules. IEEE Transactions on Neural
Networks 12, March 2001

[15] S. Mitra, R. De, S. Pal, Knowledge based fuzzy MLP
for classification and rule generation, IEEE Transactions on
Neural Networks 8, 1338-1350, 1997

[16] W. Duch, R. Adamczak, Y. Hayashi, Neural elimina-
tors and classifiers, 7th International Conference on Neural
Information Processing (ICONIP-2000), Dae-jong, Korea,
Nov. 2000, ed. by Soo-Young Lee, pp. 1029 - 1034

