
Neural Networks from Similarity Based
Perspective

Włodzisław DUCH, Rafał ADAMCZAK
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toru´n, Poland; e-mail: duch,raad@phys.uni.torun.pl

and Geerd H.F. DIERCKSEN
Max-Planck Institute of Astrophysics, 85740-Garching, Germany,

e-mail: GDiercksen@mpa-garching.mpg.de

Abstract: A framework for Similarity-Based Methods (SBMs) includes many neural
network models as special cases. Multilayer Perceptrons (MLPs) use scalar products
to compute weighted activation of neurons, combining soft hyperplanes to provide
decision borders. Scalar product is replaced by a distance function between the inputs
and the weights, offering a natural generalization of the standard MLP model to the
distance-based multilayer perceptron (D-MLP) model. D-MLPs evaluate similarity of
inputs to weights making the interpretation of their mappings easier. Cluster-based
initialization procedure determining architecture and values of all adaptive parameters
is described. D-MLP networks are useful not only for classification and approximation,
but also as associative memories, in problems requiring pattern completion, offering
an efficient way to deal with missing values. Non-Euclidean distance functions may
also be introduced by normalization of the input vectors in an extended feature space.
Both approaches influence the shapes of decision borders dramatically. An illustrative
example showing these changes is provided.

1 Introduction

Multilayer perceptrons (MLPs) trained with backpropagation method (BP) are certainly the
most popular among all neural techniques [1]. Applied to classification or approximation
problems MLPs use sigmoidal functions to provide soft hyperplanes dividing the input space
into separate regions. MLPs are therefore similar to the statistical discriminant techniques or
the Support Vector Machines (SVM) [2], although combination of soft sigmoids allows for
representation of more complex, nonlinear decision borders. This is usually considered to be
a strength of the MLP model, although in cases when sharp decision borders are needed it
may also become its weakness. For example, classification borders conforming to a simple
logical rulex1 > 1∧ x2 > 1 are easily represented by two hyperplanes but there is no way
to represent them accurately using soft sigmoidal functions used in MLPs. This problem
is especially evident if regularization terms are added to the cost function, enforcing small
values of weights. As a result for some datasets no change in the learning rule or network
architecture will improve the accuracy of neural solutions. A good real-world example is the
hypothyroid dataset, for which the best optimized MLPs still give about 1.5% of error [3]
while logical rules reduce it to 0.64% [4]. Most research on neural networks is concentrated
on architectures and learning rules, but the selection of neural transfer functions may be
crucial to network performance [5].

Another problem with MLP models concerns selection of architecture and initialization
of adaptive parameters. Constructive neural algorithms [6] may help to find architectures
that roughly match complexity of the data analyzed, but constructive models may also end



94 W. Duch, R. Adamczak, G.H.F. Diercksen

up in suboptimal architectures. Genetic algorithms applied to selection of architectures do
not guarantee good solutions and are computationally very demanding [7]. Missing inputs
are especially difficult to handle since filling the unknown features with the most frequently
appearing values may lead to poor results.

MLPs are widely used for classification and approximation problems, while many inter-
esting problems involve pattern completion and association. Associative memory models are
usually based on recurrent networks. It would be very interesting to accomplish similar task
using feedforward MLP networks. MLPs, SVMs [2] and other methods based on discriminant
analysis, perform mappings that are rather difficult to interpret. Proponents of the logical rule-
based machine learning methods consider it to be the biggest drawback of neural networks,
limiting their applications in safety-critical fields such as medicine. Similarity-Based
Methods (SBMs), for example thek-nearest neighbor (k-NN) method, retrieve the relevant
context for each query presented to the classification system, providing some interpretation
and estimating probability of different class assignment. Such interpretation is also possible
for the Radial Basis Function (RBF) networks using Gaussian or other localized functions, or
the Learning Vector Quantization (LVQ) method based on optimization of reference vectors.
It may seem that such an interpretation is not possible for MLPs since they belong to the
discriminant rather than to memory-based techniques. One way to obtain an interpretation
of MLP decisions is to study the transition from MLPs to networks performing logical
operations [8]. Although discriminant methods and prototype methods seem to be quite
different in fact the two approaches are deeply connected. A single hyperplane discriminating
vectors belonging to two classes may be replaced by two prototypes, one for each class. For
N prototypes one can generateN(N −1)/2 pair-wise discriminating hyperplanes providing
piece-wise linear approximation to the decision borders.

All these shortcomings of the MLP networks are overcome here. Recently a general
framework for Similarity-Based Methods (SBMs) used for classification has been presented
[9]. It is briefly presented in the next section, and several examples of well-known and new
neural methods derived using this framework are presented. In particular the Distance-Based
Multilayer Perceptrons (D-MLPs) are introduced, improving upon the traditional approach
by providing more flexible decision borders, using information about the structure of the data
derived from clusterization procedures and enabling a prototype-based interpretation of the
results. Symbolic values used with probabilistic distance functions allow to avoid ad hoc
procedure to replace them with numerical values. SBM perspective allows to initialize all
D-MLP network parameters starting from some one of standard clusterization procedures
and thus using information that may be easily obtained from the data. A simple procedure
to change D-MLP models into associative memories and to use them in pattern completion
problems is described in the fourth section. As a result missing values are handled in an
efficient way. Finally to avoid writing computer programs for the backpropagation method
for each type of distance function a simple transformation of the input data is proposed,
allowing for distance-based interpretation. An illustration of this method on the Iris data is
presented in the sixth section. The paper is finished with a short discussion.

2 Neural methods from similarity-based perspective

The classification problem (the same reasoning may also be applied to regression and pattern
completion problems) is stated as follows: given a set ofNt class-labeled training vectors
{R j,C(R j)}, j = 1..Nt, whereC(R j) is the class ofR j, and given a vectorX of an unknown
class, use the information provided in the similarity measureD(X,R j) to estimate the
probability of classificationp(Ci|X;M), whereM describes the classification model used



Neural Networks from Similarity Based Perspective 95

(values of all parameters and procedures employed). A general similarity-based model of an
adaptive system used for classification should include at least the following elements:

M = {{R j},D(·),G(D(·)),k,E[·],K(·),R (·|·)}, where

{R j} is the set of reference vectors created from the set of training vectors{Xi} by some
procedure;D(·) is a similarity function (frequently a distance function) parameterized in
various ways, or a table used to compute similarities;G(D(X,R)) is a weighting function
estimating contribution of the reference vectorR to the classification probability;k is the
number of reference vectors taken into account in the neighborhood ofX; E[·] is the total
cost function optimized during training; it may include regularization terms and may depend
on a kernel functionK(·), scaling the influence of the error, for a given training example,
on the total cost function, using a risk matrixR (Ci|Cj) that estimate the costs of assigning
wrong classes.

The cost function that minimizes risk for overall classification is:

E({X};R ,M) = ∑
i
∑
X

R (Ci,C(X))H (p(Ci|X;M),δ(Ci,C(X))) (1)

wherei = 1. . .Nc runs over all classes andX over all training vectors,C(X) is the true class
of the vectorX and functionH(·) is monotonic and positive, often a quadratic function.
The elements of the risk matrixR (Ci,Cj) are proportional to the risk of assigning theCi

class when the true class isCj, and in the simplest caseR (Ci,Cj) = 2−δi j or R (Ci,Cj) =
1+ |i− j| is taken (strictly speaking a unit matrix is added here to the usual risk matrix).M
specifies all adaptive parameters and variable procedures of the classification model that may
affect the cost function. Regularization terms aimed at minimization of the complexity of the
classification model are frequently added to the cost function, helping to avoid the overfitting
problems. IfH(·) is a quadratic function of the maxi p(Ci|X;M)−δ(Ci,C(X)) standard mean
square error (MSE) function is recovered.

An adaptive system may include several such modelsMl and an interpolation procedure to
select between different models or average results of a committee of models. Such averaging
with boosting procedures for selection of training vectors leads to creation of stable and
accurate classifiers [10]. Simple averaging, or linear combination of several models is most
frequently used:

P(Ci|X ;M) =
N

∑
l=1

Wl p(Ci|X ;Ml) (2)

Least square minimization (LSM) procedure is used to determineWl coefficients. Creat-
ing ensembles one should use all information available. Since we know for which training
vectorsRk each model makes an error it seems reasonable to use this information in making
an ensemble. Coefficients of linear combination should depend on the distance betweenX
and those regionsRl,k of the feature space where modelMl works poorly, therefore:

P(Ci|X ;M) =
N

∑
l=1

∑
k

WlD(X ,Rl,k)p(Ci|X ;Ml) (3)

should be a good choice. Identical LMS optimization is used as in the previous case.
Probabilities are obtained after renormalization:

p(Ci|X ;M) = P(Ci|X ;M)/∑
j

P(Cj|X ;M) (4)



96 W. Duch, R. Adamczak, G.H.F. Diercksen

Many pattern recognition, machine learning and neural network models are a special case
of this SBM framework. One way to use it is to start with the simplest model and turn on
different optimization parameters and procedures, for example starting from the simplesk-
NN and optimizing the number of neighbors, distance function parameters, soft weighting,
feature selection, number and position of reference vectors. Each step towards more complex
model decreases the bias of the classifier, but may increase its variance [10], therefore after
each step the model should be validated and only if the greater complexity is justified by
higher accuracy more complex models should be accepted, otherwise a different type of
optimization should be used.

2.1 RBF and LVQ-like methods

In RBF networks Euclidean distance functionsD(X,R j) = ||X−R j|| are assumed and a
radial, for example GaussianG(D) = exp(−D2) weighting functions are used. Essentially
RBF is a minimal distance soft weighted method with no restrictions on the number of
neighbors – reference vectorsR j that are near influence probabilities of classification more
than those that are far. The SBM framework suggests that there is nothing special about
this choice of distance function and the weighting function. The simplest suitable weighting
function isthe conical radial function: zero outside the radiusσ and 1−D(X,R)/σ inside
this radius. Classification probability is calculated by the output node using the formula:

p(Ci|X ;σ) =
∑ j∈Ci

G(D(X;R j),σ)
∑ j G(D(X;R j),σ)

; (5)

G(D(X;R j),σ) = max
(
0,1−D(X,R j)/σ

)
(6)

HereW (D) = G(D(X,R j);σ) is the weight associated with the distanceD. Reference
vectors outside of theσ radius have no influence on the classification probability while
their influence inside this radius depends linearly on the distanceD. Combining this
weighting with the restriction on the number of neighbors leads to the weightW (D) =
max(0,1− D/αrk), where rk is the distance to thek−th neighbor andα is an adaptive
parameter optimized on the test set.

More sophisticated versions of this algorithm include optimization of the shape of
G(D;σ) weighting functions using additional parameters. One example is a combination of
two sigmoidal functionsσ(||X−R j||−b)−σ(||X−R j||−b′), providing larger area in which
the weighting factor is essentially constant. Another example is the hyperbolic weighting
scheme:

p(C|X ;M) =
∑ j δ(C(X),C)/

(
D

(
X,R j

)
+ ε

)
∑ j 1/(D(X,R j)+ ε)

(7)

whereε is a small positive number.
In the Gaussian classifier [11] or in the original RBF network only one parameterσ was

optimized [12]. Optimization of the positions of the reference centersR j leads to the LVQ
method [13] in which the training set is used to define the initial prototypes and the minimal
distance rule to assign the classes. The Restricted Coulomb Energy (RCE) classifier [14]
uses a hard-sphere weighting functions. The Feature Space Mapping model (FSM) is based
on separable, rather than radial weighting functions [15]. All these models are special cases
of general SBM framework.



Neural Networks from Similarity Based Perspective 97

An important problem with localized description of the data by RBF and similar methods
concerns the representation of oblique probability distributions of the classes. On very
recently a method to create obliqe probability distributions inN-dimensional space using
only N parameters has been described [5]. Oblique decision borders in SBM are obtained
by rotation of the local coordinate system in which distances are computed. It is sufficient
to use a rotation matrix with scaling factorsRii = si on the diagonal and rotation parameters
Rii+1 = βi as the only off-diagonal element.

2.2 D-MLP model

Threshold neurons compute distances in a natural way. If the input signalsX and the weights
W are(±1. . .±1) vectors, neuron withN inputs and the thresholdθ realizes the following
function:

Θ(
N

∑
i

WiXi −θ) =
{

0 if ||W−X||> (N −θ)/2
1 if ||W−X|| ≤ (N −θ)/2

(8)

where|| · || norm is defined by the Hamming distance (counts the number of mismatches for
binary strings). One can interpret the weights of neurons in the first hidden layer as addresses
of the reference vectors in the input space and the activity of threshold neuron as activation
by inputs falling into a hard sphere of radius(N −θ)/2 centered atW. Changing binary into
real values and threshold into sigmoidal neurons for inputs normalized to||X|| = ||W|| = 1
leads to a soft activation of neuron by input vector close toW on a unit sphere. The Hamming
neural network [16] is actually a neural realization of the nearest neighbor method for a single
neighbor and binary vectors.

In general treatingW and X as vectors and activation as a scalar productW · X, the
activation of a neuron is written as:

W ·X =
1
2

(
||W||2+ ||X||2−||W−X||2

)
(9)

For normalized input vectors sigmoidal functions (or any other monotonically growing
transfer functions) may therefore be written in the form:

σ(W ·X+θ) = σ(d0−D(W,X)) (10)

whereD(W,X) is proportional to the square of Euclidean distance betweenW andX and
d0 = 1

2 + 1
2||W||2+θ. Normalization||X||= 1 is necessary to avoid the dependence ofd0 on

X. Sigmoidal function evaluates the influence of the reference vectorsW on the classification
probabilityp(Ci|X;{W,θ}). It plays a role of the weight functionG(D) = σ(d0−D(W,X)),
monotonically decreasing, with flat plateau for small distances, reaching the value of 0.5 for
D(W,X) = d0 and approaching zero for larger distances. For normalizedX but arbitraryW
the range of the sigmoid argument lies in the[θ−|W|,θ+ |W|] interval. A unipolar sigmoid
has a maximum curvature around±2.4, therefore small thresholds and weights mean that the
network operates in an almost linear regime. Regularization methods add penalty terms to
the error function forcing the weights and thresholds to become small and thus smoothing the
network approximation.

From the SBM point of view in MLP networks sigmoidal functions are used to estimate
the influence of weight vectors according to the distance between weight and training vectors.
By changing the distance function in equation (10) from the square of the Euclidean distance



98 W. Duch, R. Adamczak, G.H.F. Diercksen

to some other distance measures new types of neural networks, called further D-MLP
networks, are defined. Another possibility is to write the weighted product in a form:

σ(W ·X) = σ
(

1
4
(||W+X||2−||W−X||2)

)
(11)

The D-MLP networks simply replace the square of the Euclidean distance in the equation
above or in Eq. (10) by Minkovsky’s or other type of norms. The network with the nodes
computingσ(d0 −D(W,X)) is trained like the standard MLP, using the backpropagation
method [1]. Backpropagation procedure requires derivatives of the distance functions, but
for Minkovsky and other popular distance functions they are easily derived.

In Eq. (10) the parameterd0 should be treated as an adaptive parameter only ifX is
normalized. This may always be done without loss of information if one or more additional
components are added to the vector, extending the feature space by at least one dimension.
In particular takingxr =

√
R2−||X||2, whereR ≥ maxX ||X ||, amounts to a projection of the

data on a unit hemisphere with radiusR (more sophisticated projection is described in [18]).
If non-Euclidean norm is used the sphere changes its shape (see sect. 5).

2.3 Other examples of neural methods derived from SBM framework

The non-Euclidean D-MLP networks described above are only one of many methods that
may be derived from SBM framework. Adapting the similarity function to minimize in-
class distance variance and maximize between-class variance, a non-linear version of Fishers
discrimination analysis is obtained. Combination of sigmoidal functions offers a good
parametrization and network realization here:

d(Ai,Bi) = ∑
j

αi jσ
(
βi j|Ai −Bi|−γi j

)
(12)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sum of 3 sigmoids

Figure 1: Sum of 3 sigmoidal functions provides a useful distance function allowing to minimize
in-class and maximizes between class distances, defining non-linear version of Fisher discrimination.

A network of nodes computing such distances may be used for classification or prediction
as any other neural network. It also may be used for extraction of logical rules from data,
either fuzzy rules or – in the limit of high slopes – crisp logical rules.



Neural Networks from Similarity Based Perspective 99

Another interesting possibility is to use a neural network to learn the most appropriate
similarity and weighting function. The advantage of such an approach is that instead of
having a global coordinate system with a single distance function local coordinate systems
smoothly changing in different points of the feature space are defined, providing optimal
distance and weighting in different regions of the input space. Combining thek-NN approach
with neural distance function is certainly worth trying.

Discrimination and cluster-based methods are deeply connected. A single discrimination
hyperplane (used in linear discrimination method or provided by MLP neuron) may be
replaced by a fixed reference vector (for example cluster center) and an adaptive reference
vector. In the Statlog project comparing 20 classification methods the simplest nearest
neighbor method appeared as the top one in about one third of all cases [17]. The network
realization described below is a generalization of thek-NN method and should improve the
results on the remaining problems.

X

X

X

X

1

2

3

4

input
hidden
layer output

R1

R2

R3

R4

R5

C1

C1

C2

C2

C3

p(C1|X;M)

p(C2|X;M)

p(C3|X;M)

W11

W35

Figure 2: Network generalization of thek-NN method. The hidden nodes compute distances to
reference vectors and returnk values of class labels associated with the nodes, while the output nodes
compute probabilities.

The network has hidden nodes computing distancesD(X−R), whereR are reference
(training) vectors.k nodes with the smallest distances output their class labelh j(X;R) = Ci

and the remaining nodes outputh j(X;R) = 0. The classes are numbered fromCi = 1. . .NC.
The output layer computes probabilities using the formula:

P(Ci|X;M) = ∑
j

Wi j ·h j(X) (13)

p(Ci|X;M) =
P(Ci|X;M)

∑ j P(Cj|X;M)
(14)



100 W. Duch, R. Adamczak, G.H.F. Diercksen

The weightWi j between the hidden nodeR j belonging to classCj and the output node
computing probabilities for classCi is initially equal toWi j = (1−R (Ci,Cj))/Cj, where the
elements of the risk matrix 0≤ R (Ci,Cj) ≤ 1 in the simplestk-NN are replaced bydeltai j.
Thus each vector that belongs to thek nearest ones or that falls into ther radius ofX and is of
theCj class, contributes to the probability of theCi class a value 1−R (Ci,Cj). The structure
of the network is shown in Fig. 2. For the cost function that should be optimized one may
take:

E(W;M) = ∑
X,i

(p(Ci|X;M)−δ(Ci,C(X)))2 (15)

where the modelM includesk, weights and distance-related as parameters. If the number of
classification errors should be minimized binary 0, 1 output probabilities are taken, provided
for example by the winner-takes-all neural procedure. Binary probabilities should be used
with global minimization or search-based methods, since gradient-based methods cannot
be used in this case. The output weights, initialized toWi j = (1−R (Ci,Cj))/Cj, may be
treated as adaptive parameters. Introduction of soft weightingG(D(·)) allows to use gradient
optimization methods. For many datasets (especially for images [17]) this simple network
should outperform MLPs and other classification models, since the results should be at least
as good as thek-NN results.

A single neuron provides discrimination hyperplane which may be replaced by one
reference vector. Position of this reference vector should be adapted to the data. Using
different Minkovsky distance functions changes the decision borders. Using one prototype
Ri per class (i.e. one hidden node) class membership is decided by discriminant function:

z(X) = W1D(X,R1)−W2D(X,R2)−θ (16)

where θ is a threshold. The 3 adaptive parameters,W1,W2,θ and the positions of two
prototype vectors provide very flexible decision borders in the two class problem. If more
reference vectors are required the output node computing discriminating function sums over
prototypes for each class:

z(X) = ∑
i∈C1

WiD(X,Ri)− ∑
i∈C2

WiD(X,Ri)−θ (17)

Scaling of the whole sum, instead of influences of individual reference vectors, is a simple
way to reduce the number of adaptive parameters used by the system. One option that we are
investigating is to use simple gradient optimization for weights and thresholds, and search
based techniques for non-linear scaling parameters.

Similarity of such neural realization of the nearest neighbor method to RBF model with
radial coordinate functions should be noted. If the number of neighbors is not restricted the
two methods are identical.

SBM point of view on neural networks not only allows to define many new methods,
but leads also to novel applications such as pattern completion or associative memory recall.
A natural cluster-based initialization described below determines all parameters of D-MLP
networks.

3 Initialization of the network

The D-MLP network uses normalized vectors, adding one extra dimension if necessary,
projecting the data on a hemisphere. The network should be initialized taking the centers of



Neural Networks from Similarity Based Perspective 101

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 3: Decision borders for various exponents of Minkovsky distance function in the nearest
neighbor method forα=0.1, 0.3, 0.7, 1, 2, 8. All weights are identical.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 4: Decision borders for various exponents of Minkovsky distance function in the nearest
neighbor method forα=0.1, 0.3, 0.7, 1, 2, 8. Weight of the first prototype is 3 times larger than
other weights.



102 W. Duch, R. Adamczak, G.H.F. Diercksen

clusters in the extendedN +1 dimensional space as weightsW, and takingd0 = D(W,Xb),
where Xb is a vector at the border of a given cluster. To define clusters we have tried
[18] dendrograms and decision trees, but other clusterization methods may also be used
for initialization [11]. Using weighted activation the contribution of a center of an input
data clusterC laying on the unit sphere isW · C. The largest activation is obtained
when the weightsW point in the same direction as the centerC. The sigmoidal function
σ(C ·X−θ) = (1+exp((−C ·X+θ)/T ))−1, whereT determines the slope, has the largest
gradient in the direction ofW = C. The valueσ(0) = 0.5 is obtained at aθ distance from the
origin of the coordinate system. Since theC vector is normalizedθ= 1 places the contours for
0.5 value tangentially to the unit hypersphere. Contours for lower valuesσ(C ·X−θ) < 0.5
cut segments of the hypersphere in which the value ofσ(C ·X−θ) is constant.

A parameter which is rarely changed in MLPs is the slope of sigmoidal functions. It
defines the area which has an influence on performance of each node. If the slope is too high
the area in which the sigmoidal function is not approximately constant is small and only a
few training vectors have a chance to influence the gradient-based learning procedures. If it is
too low then all functions strongly overlap and there is no possibility to create sharp decision
borders. Normalization of the weightsW is equivalent to a local change of the slope:

(W ·X+θ)/T = (
W

||W|| ·X+
θ

||W||)||W||/T

= (W′ ·X+θ′)/T ′ = (d′
0−D(W′,X))/T ′ (18)

Thus without loss of generality bothX andW′ may be normalized. No special learning
for the slopes is required. A useful variability range of the sigmoid is between its maximum
curvature points, which forT = 1 are between∆(T ) = ±2.4. If the variability range is
assumed to be 1/10 of the size of the cluster, i.e.∆(T ) =±d0/10 then settingT ≈ d0/24 will
be appropriate. After such initialization training of the network is usually quite short.

In practice one may take a dendrogram, starting from the top few largest clusters,
initializing the network with the number of neurons equal to the number of these clusters,
and training the network. If the complexity of the network is too low results on the training
set will be poor. More clusters should be taken into account – in case of dendrograms one
should break those clusters that are inhomogenous in the first place. More complex network
is initialized and trained, until the results on the training set will be satisfactory.

In the XOR case the input vectors for class = T are(0,1),(1,0) and for the class = F are
(0,0),(1,1). The mean for each feature is 0.5 and after shifting and renormalizing the vectors
areC1 = (−1,+1)/

√
2, C2 = (+1,−1)/

√
2 for class T and(−1,−1)/

√
2, (+1,+1)/

√
2 for

class F. Selecting one of the classes for output, for example class T, initial weights for the
first neuron are given byC1 and for the second neuron byC2, while the hidden to output
layer weights are all+1. This is the correct and the simplest solution for the XOR problem
found without any optimization of the network! For more complex examples of this type of
initialization see [18].

Since the architecture of the MLP network in the extended space is completely determined
by the initialization procedure (the clusterization method used determines all parameters) and
the training is short due to a good starting point many distance functions may be tried on a
given problem.



Neural Networks from Similarity Based Perspective 103

4 Pattern completion, associative memory and missing values.

Methods belonging to the SBM framework, such as the nearest neighbor method, may be
used as associative memories in a natural way. Any part of the input vectorX = (Xd,Xu) may
be used to find nearest neighbors in the subspace of defined input valuesXd. The undefined
part Xu is predicted interpolating the values of nearest neighbors for the dominating class.
Optimization of parameters for classification in theXd subspace only should improve results
but frequently the samek-NNmodel works well in subspaces.

Pattern completion may be implemented in several ways. In many cases vectors with
missing values are removed from the training set or some averaged or most frequent values
are inserted. In this way useful information is thrown out or inappropriate information is
introduced. For example, the echocardiogram data from UCI repository [20], contains 132
vectors, 12 attributes of which only 1-9 are useful, the second being the class. 15 values of
the attribute 6 are missing, 11 values for attribute 7 etc. If the attributes with missing values
are ignored 10-fold stratified crossvalidation tests gives 87.8% accuracy using on average
24 neurons of the FSM network [15] (FSM is based on constructive algorithm, therefore
different number of neurons may be created in different crossvalidations), while inserting
averages over all classes decreased the accuracy to 85.5% (with 20 neurons), and inserting a
new value that does not appear in the data, such as -100, decreased accuracy to 81.5% (using
22 neurons). The same behavior has been observed for Hepatitis dataset taken from the same
source. the data contains 155 vectors, 18 attributes, 13 of them are binary, other have integer
values. The last attribute has 67 missing values, attribute 16 has 29 missing values etc. Using
10-fold crossvalidation tests ignoring missing values gives 79.9% accuracy using on average
19 neurons, inserting averages over all classes 81.0% (with 12 neurons) and inserting -100
gives lowest accuracy 79.1% (with 16 neurons).

Suppose that 2-dimensional data vectors are clustered around (1.0,1.0) and (2.0,2.0), with
the first cluster containing twice as many vectors as the second. Suppose now that the second
feature is missing in the training vectorX with x1 = 1.9. If X neighbors in thex1 subspace,
around the givenx1 = 1.9 values are found, interpolating the missingx2 value will give
approximately correct answer (around 2.0) while using the most frequent values or averaged
values will give incorrect guess (around 1.0). In many applications hierarchical approach
to collection of data is taken: initial tests allow to make a hypothesis, followed by specific
tests that confirm it or not. The challenge is to discover such hierarchical classification. In
statistics analysis of independent surveys in which some questions are not answered by some
respondents and some questions are not asked in some surveys is known as the “multiple
imputation” problem (see [21]), but assumptions about normal distributions used in this
theory may not be valid. Another approach is described below.

In the first step missing features in the training vectors should be completed. Information
contained in training vectors with missing features is than used to improve the classification
model. Probability of unknown valuesXu is calculated by maximization of:

p(Xu|Xd;M) = max
u′,i

p(Ci|(Xu′,Xd);M) (19)

i.e. searching for the maximum of the probability given by the modelM in the subspace of
undefined features, with fixed point in theXd subspace. If a single missing feature is sought
one dimensional maximization or a search procedure in the range of admissible values for
Xu is done. Initial modelM is prepared using either training vectors that have all features
defined, or – if most vectors contain missing values – a largest subset of training vectors is
found with the largest number of the same input features defined. For example, if only a few



104 W. Duch, R. Adamczak, G.H.F. Diercksen

vectors with all values are given but a large number contains just a single missing valueXu,
the initial classification model should be based on reduced number of features. The model
is then retrained using vectors containing the extra featureXu and the missing values of this
feature imputed to the remaining vectors. At each step one may check if it is worth to include
the new feature and to perform pattern completion. If the results in crossvalidation tests get
worse the feature should be dropped.

For strongly interacting features the problem of initial feature selection and the order of
imputing/adding features suffers from combinatorial explosion. There is no guarantee that
the optimal model will be found. In practice network computations make the whole search
procedure rather simple, since after a reasonable initial model is created maximization in Eq.
(19) does not involve costly multidimensional searches, but can be performed analytically or
by evaluating the excitation level of network nodes. Moreover, since networks offer analytical
representation of computed probabilities integration using statistical sampling techniques is
easily performed. Using FSM network and the method based on Eq. (19) for the two datasets
mentioned above we have obtained for the echocardiogram 90.2% using only 18 neurons,
and for the hepatitis 83.4% accuracy using only 10 neurons, significantly better result than
by other methods.

5 Normalization of input vectors in non-Euclidean spaces

The parameterd0 should be treated as an adaptive parameter only ifX is normalized. This
may always be done without loss of information if one or more additional components are
added to the vector, extending the feature space by at least one dimension. TakingXr =√

R2−||X||2, whereR≥maxX ||X||, amounts to a projection of the data on a unit hemisphere
with radiusR. In general vectors(X,Xr) may be normalized||(X,Xr)||D = 1 using the metric
defined by the distance functionD(X,R).

The distance function may be heterogeneous, using Minkovsky’s metric for numerical
features and probabilistic metric functions for symbolic features. Minkovsky’s distance with
the scaling factors is:

D(A,B;s)α =
N

∑
i

sid(Ai,Bi)α (20)

Thed(·) function is used to estimate similarity at the feature level and in the simplest case
is equal to|Ai −Bi|. For largeα this metric changes the sphere into a soft cuboid, forα = 1
it becomes a pyramid and forα < 1 it has a hypocycloidal shape. Instead of deriving the
backpropagation equations for the transfer functions with non-Euclidean distances one may
achieve similar result using a standard MLP network withxr determined by the normalization
condition using the desired metric.

In memory-based reasoning the Modified Value Difference Metric (MVDM) has gained
some popularity [19]. The distance between twoN-dimensional vectorsA,B with discrete
(nominal, symbolic) elements, in aK class problem, is computed using conditional probabil-
ities:

Dα(A,B) =
N

∑
j

K

∑
i

∣∣p(Ci|A j)− p(Ci|B j)
∣∣α (21)

wherep(Ci|A j) is estimated by calculating the numberNi(A j) of times the valueA j of the
feature j occurred in vectors belonging to classCi, and dividing it by the number of times
A j occurred for any class. A “value difference” for each featurej is defined asdα

V (A j,B j) =



Neural Networks from Similarity Based Perspective 105

∑K
i |(p(Ci|A j)− p(Ci|B j))|α. It allows to computeDV (A,B) as a sum of value differences

over all features. Distance is defined here via a data-dependent matrix with the number of
rows equal to the number of classes and the number of columns equal to the number of all
attribute values. Generalization for continuos values requires a set of probability density
functionspi j(x), with i = 1..K, j = 1..N.

Using VDM type of metrics leads to problems with calculation of gradients, therefore
another method is advocated here. Replacing symbolic features by vectors ofp(Ci|A j)
probabilities (with dimension equal to the number of classes times the number of different
symbolic values the feature takes) allows to reproduce MVDM distances using numerical
values of vector components. Many other types of metric functions exist [19] and their
performance should be empirically verified. Several alternative extensions of the input space
may be considered, for example adding one or more featuresXr = D(X,R) equal to the
distance of a given vectorX to some fixed vectorR a parabolic projection is made.

It may be of some advantage to increase the separation of the clusters projected on the
hypersphere. It is impossible to make such a projection on the whole hypersphere without
violating topological constraints. In the one-dimensional case withX ∈ [−1,+1] the(X ,Xr)
vector should not make a full circle whenX is changed from−1 to +1 because the two
extreme vectorsX = ±1 will then be identical. An optimal separation for 3 vectors with
the length||X ||, ||X ||+ ∆, ||X ||+ 2∆ is to place them in corners of equilateral triangle, for
example at angles 0,±120◦. One can search for the best input preprocessing treating it as a
rigorous optimization problem, or just use polar coordinates to shift some upper hemisphere
vectors to the part of the lower hemisphere. Much simpler approach is to rescale all vectors
to get their Euclidean norms≤ 1, use the norm||X || mapping it to points on a circle:(
sinπ

3(4−5||X ||),cosπ
3(4−5||X ||)

)
. These points for 0≤ ||X || ≤ 1 are within the angle

−π/3 and 4π/3. The first factor, sinπ3(4−5||X ||) is used to rescale components of the vector

X, while the second factor is taken as an extraXr component. Extended vectors||(X j,X j
r )||D

are renormalized using the metric functionD(·), placing them on a unit sphere defined by
this metric.

6 Pedagogical illustration

The influence of non-Euclidean distance functions on the decision borders is illustrated here
on the classical Iris flowers dataset, containing 50 cases in each of the 3 classes. The flowers
are described by 4 measurements (petal and sepal width and length). Two classes, Iris
virginica and Iris versicolor, overlap, and therefore a perfect partition of the input space into
separate classes is not possible. An optimal solution (from the point of view of generalization)
contains 3 errors and is obtained using only two of the four input features (x3 and x4),
therefore it is easy to display and only those two features have been left in simulations
described below.

A standard MLP solution is obtained with 2 input, 4 hidden and 3 output neurons, with
a total of 27 adaptive parameters. One discriminating plane per class for the smallest and
the largest flowers (setosa and virginica) is needed and two planes are needed to separate
the vectors of the versicolor class. To increase accuracy and speed up learning, in the final
phase of learning only the vectors near the class borders were presented to the network.
The selection algorithm loops over all vectors and for a given vectorX findsk (for example
k = 10) nearest vectors belonging to a different class thanX. These vectors are written to a
new training file providing a description of the border region. This method of training leads
to sharper and more accurate decision borders, as seen in the first drawing of Fig. 6.

An additional input feature has been added and the 3-dimensional vectors normalized



106 W. Duch, R. Adamczak, G.H.F. Diercksen

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.4

0.6
0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕ ⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕ ⊕

⊕

⊕
⊕
⊕

⊕ ⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕ ⊕⊕

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.4

0.6
0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕ ⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕ ⊕

⊕

⊕
⊕
⊕

⊕ ⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕ ⊕⊕

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.4
0.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.40.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.40.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕ ⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕ ⊕

⊕

⊕
⊕
⊕

⊕ ⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕ ⊕⊕

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0090.0180.0270.036

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.40.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕ ⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕ ⊕

⊕

⊕
⊕
⊕

⊕ ⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕ ⊕⊕

Figure 5: Shapes of decision borders in the Iris case for the network without the hidden layer (3 output
neurons, 3 inputs), with growingW3 weight.

using various Minkovsky distance measures. The network has been initialized taking the
normalized weights that are equal to the centers of the three clusters. In the extended feature
space the same accuracy is achieved using only 3 input and 3 output neurons without the
hidden layer, for a total of 12 adaptive parameters. Using such network architecture with
squared Euclidean metric and the weightW3 = 0 for the thirdX3 component, only two classes
are separated. The transition process from the planar to circular decision borders is shown in
Fig. 6 (clockwise, from top left). In the learning processW3 grows, curving the borders for
vectors near the center of the drawing.

The data has been standardized and rescaled to fit it inside a square with±1 corners. An
additional feature has been added and the 3-dimensional vectors normalized using various
Minkovsky distance measures. The network has been initialized taking the normalized
weights that are equal to the centers of the three clusters. In the extended feature space
only 3 neurons are necessary. In Figure 6 dramatic changes in the shapes of decision borders
for Minkovsky metric are observed. Using squared Euclidean metric inσ(d0 −D(X,R))
transfer functions the standard MLP solution is obtained. Euclidean case corresponds to
circular decision borders, the city block metricα = 1 gives sharp, romboidal shapes, for large
α almost rectangular decision borders are obtained (an approximation using logical rules is in
this case straightforward) while for smallα a hypocycloidal shapes are created. Since smooth
transition between these cases is madeα should be treated as an adaptive parameter. For the
Iris data the optimal solution (3 errors) has been recovered for all values ofα ≥ 0.8. Smooth
transition between these cases is made by changingα and retraining the network. For other
datasets we have found significant improvements of accuracy for optimizedα.



Neural Networks from Similarity Based Perspective 107

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6: Shapes of decision borders in the Iris case for standard MLP (3 neurons) and an MLP net-
work in the extended space with vectors renormalized using Minkovsky metric,α = 0.5,1.0,1.5,2.0
and 7.0.

7 Discussion

Building robust neural networks, as fast and as easy to use as decision trees is still a
challenge. New neural models described here, such as the D-MLP networks with non-
Euclidean distance functions, are one of many realizations of similarity based methods. Non-
Euclidean transformation of input vectors leads to very flexible shapes of neural network
decision borders without any change in the standard computer programs. The training times
are short since a good initialization procedure based on clusterization techniques determines
weights, thresholds and the slopes of all neurons. The number of neurons in the network
defined in extended space may also decrease, as has been observed in the Iris example. A
new method to treat symbolic values and a new training procedure using only the vectors
close to the decision borders have been used here. Since the training is fast many different
metric functions may be tried before selecting (using crossvalidation tests) the best model.
Networks with activation given by Eq.(10) or (11) have not yet been implemented but such
models seem to be quite promising.

The change of the shapes of decision borders has been accomplished before by adding
new type of units to neural networks. For example, Ridellaet al. [22] used circular units in
their Circular Backpropagation Networks. Different type of circular units have been used by
Kirby and Miranda [23] – in their implementation two sigmoidal units are coupled together
and their output is restricted to lie on a unit circle. Dorffner [24] proposed conic section
transfer functions as a unified framework for MLP and RBF networks. Straight lines and
ellipses are special cases of conic sections. The method presented here may be treated as
a generalization of the circular or conical unit method. It is not restricted to MLP neural
networks, but can be used with any neural network and any classifier.

Neural models derived from the SBM framework solve not only classification, but
also patter completion and associative memory problems. An additional advantage of the
approach outlined here is the understanding of what these networks have really learned
in terms of the prototypes (weights) and the weighted distances from these prototypes. A



108 W. Duch, R. Adamczak, G.H.F. Diercksen

challenge for the neural networks is combinatorial productivity and extraction of knowledge
from complex datasets. First steps in this direction have already been done [15, 4].

Acknowledgments: Support of W.D. and R.A. by the Polish Committee for Scientific
Research, grant 8T11F 014 14, is gratefully acknowledged.

References

[1] C. Bishop,Neural networks for pattern recognition. Clarendon Press, Oxford, 1995.

[2] C. Cortes and V. Vapnik, Support Vector Networks.Machine Learning 20 (1995) 273-297

[3] W. Schiffman, M. Joost, R. Werner, Proc. of ESANN’93, Brussels 1993, pp. 97-104

[4] Duch W, Adamczak R, Gra¸bczewski K, Methodology of extraction, optimization and application
of crisp and fuzzy logical rules.IEEE Transactions on Neural Networks (submitted, June
1999)¡/LI¿

[5] W. Duch, N. Jankowski, New neural transfer functions.Applied Mathematics and Computer
Science 7 (1997) 639-658

[6] D.M. Skapura,Building neural networks, Addison-Wesley, 1996.

[7] X. Yao, A Review of evolutionary neural networks,International Journal of Intelligent Systems
8 (1993) 539-567

[8] Duch W, Adamczak R, Gra¸bczewski K, Extraction of logical rules from backpropagation
networks.Neural Processing Letters 7 (1998) 1-9

[9] W. Duch, Neural minimal distance methods. Proc. 3-rd Conf. on Neural Networks and Their
Applications, Kule, Poland, Oct. 14-18, 1997, pp. 183-188

[10] L. Breiman, Bagging predictors,Machine Learning 24 (1996) 123-140

[11] P.R. Krishnaiah, L.N. Kanal, eds,Handbook of statistics 2: classification, pattern recognition
and reduction of dimensionality. North Holland, Amsterdam, 1982.

[12] P.D. Wasserman,Advanced methods in neural networks. Van Nostrand Reinhold, 1993.

[13] T. Kohonen,Self-organizing maps. Berlin, Springer-Verlag, 1995.

[14] D.L. Reilly, L.N. Cooper, C. Elbaum, A neural model for category learning,Biological
Cybernetics 45 (1982) 35–41

[15] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal adaptive system.Comp. Phys.
Communic 87 (1995) 341-371

[16] R.P. Lippmann, An introduction to computing with neural nets.IEEE Magazine on Acoustics,
Signal and Speech Processing 4 (1987) 4–22

[17] D. Michie, D.J. Spiegelhalter, C.C Taylor,Machine learning, neural and statistical classification.
Elis Horwood, London, 1994.

[18] W. Duch, R. Adamczak, N. Jankowski, Initialization and optimization of multilayer perceptrons,
3rd Conf. on Neural Networks and Their Applications, Kule, Poland, October 1997, pp. 105-110

[19] D.R. Wilson, T.R. Martinez,Improved heterogenous distance functions. J. Artificial Intelligence
Research6 (1997) 1-34

[20] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-data-bases.

[21] D.B. Rubin, Multiple imputation after 18+ years.J. of the American Statistical Association 91
(1996) 473-489

[22] S. Ridella, S. Rovetta, R. Zunino, Circular Backpropagation Networks for Classification,IEEE
Trans. Neural Networks 8 (1997) 84–97

[23] M.J. Kirby, R. Miranda, Circular Nodes in Neural Networks,Neural Computations 8 (1996)
390-402

[24] G. Dorffner, A Unified Framework for of MLPs and RBFNs: Introducing Conic Section Function
Networks,Cybernetics & Systems 25 (1994) 511-554


