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Abstract. Experts in machine learning and fuzzy system frequently identify understanding
the data with the use of logical rules. Reasons for inadequacy of crisp and fuzzy rule-based
explanations are presented. An approach based on analysis of probabilities of classification
p(Ci|X;ρ) as a function of the size of the neighborhoodρ of the given caseX is presented.
Probabilities are evaluated using Monte Carlo sampling or – for some models – using ana-
lytical formulas. Coupled with topographically correct visualization of the data in this neigh-
borhood this approach, applicable to any classifiers, gives in many cases a better evaluation
of the new data than rule-based systems. Two real life examples of such interpretation are
presented.

1 Introduction.

Classification and prediction are the two most common applications of computa-
tional intelligence (CI) methods, i.e. methods designed for solving problems that
are effectively non-algorithmic. Although sometimes classification by a black box
is sufficient – if it is reliable – domain experts use software to help them to un-
derstand (or explain) the data. The goal of data mining, or Knowledge Discovery
in Databases (KDD), is more ambitious than understanding of new data. Knowl-
edge discovery requires analysis of relations in the whole database, trying to create
a symbolic domain theory, while understanding new data may be done locally, for
example by pointing that it is typical for a known category. Most methods used for
of classification are unable to do that. They rarely provide confidence bounds, so
the user is not able to evaluate how reliable is the answer given by the system. Rule-
based systems are not much better in this respect if continuos values of attributes are
used. Near the rule decision borders reliability of the system should decrease and
alternative diagnoses should appear in a smooth way. Statistical methods are ori-
ented towards global characterization of numerical aspects of the data for a whole
class of objects, providing means and variances instead of symbolic, understandable
descriptions.

Explanation and reliability assessment are in some applications equally impor-
tant as the accuracy of classification and prediction. Rule-based explanation has
been a strong point of the machine learning (ML) inductive systems [1,2]. Although
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ML algorithms work well with simple data building models and learning from struc-
tured data is still rather difficult. Inductive Logic Programming (IPL) is considered
to be the best approach in such cases, but for large databases it may be too slow
[3]. Molecular biology and genomics are two very important fields in which theory
building, rather than classification models, seem to be necessary. Molecules are not
described in a fixed-dimensional feature spaces. By analogy to the database terms
one may call typical data analysis problems defined in fixed feature spaces “flat”,
while those problems that require construction of a new set of attributes, relating the
description to known domain theories, as “relational”.

Leaving relational problems aside for the flat data problems crisp logical rules
provide adequate explanation only if all attributes have a few discrete values. Con-
tinuous values require discretization, or defining some “receptive fields” that may
be used in rule conditions. Many books have been written about the advantages of
fuzzy rules, soft versions of neural and other CI algorithms have been published (cf.
[4] or [5]), but it still remains to be seen whether these algorithms will have a lasting
impact on computational intelligence field. So far no extensive comparison of fuzzy
classification methods with other methods on well-known data (such as the Stalog
datasets [6]) have been made, and little has been done in applications to difficult,
real-world problems such as handwritten character or speech recognition.

An important advantage of the fuzzy and other rule-based approaches to data
analysis is their ability to provide explanation for the action of the system in form of
understandable rules. The goal of the present paper is to analyze whether such ex-
planations are really satisfactory and to propose a universal approach, applicable in
connection with any classifier, that may provide an explanation. In the next section
advantages and disadvantages of fuzzy explanations are presented. An alternative
approach allowing for explanation of the data, based on calculation of probabilities
as a function of the input uncertainty and visualization of the neighborhood of the
case analyzed is presented in the third section. Two real-life examples are presented
in the fourth section and a short discussion concludes this paper.

2 Fuzzy explanations

Acceptable explanations depend on the particular domain and the type of data.
Fuzzy set theory [7] is a method to deal with imprecise information. Since our lan-
guage is discrete while our senses provide continuous information some form of
categorization or discretization must be done to allow for communication. Catego-
rization can be modeled at a high level as clusterization of percepts. An explanation
of the sensory data is usually given by an assignment of a percept to some cate-
gory and the ability to quote the reasons for such assignment. Reasoning refers to a
background knowledge, which in the case of our brains is very complex and highly
specialized. For example, the ability to recognize faces depends on the activity of
neocortex in the inferotemporal gyrus region of the right lobe, containing group
of neurons that specialize in high-level object recognition. Explanations referring
to features analyzed by lower levels of visual system functions, such as particular
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shapes, colors, movements, are not only unnatural, but ultimately impossible. All
important work enabling the final classification is done at the pre-processing level,
defining complex transformations that allow us to recognize a particular pattern as a
face. Thus explanation should rely on sophisticated transformation of input features
and rarely may be reduced to rules with conditions using large receptive fields de-
fined by some membership functions applied to raw measurements. These receptive
fields are usually called linguistic terms or linguistic variables [8].

Although crisp logical rules are the easiest to interpret there are several problems
with explanations based on such rules [9]:

• Only one class is predicted as the winner.
• Some cases may be rejected as unclassified without justification.
• Crisp rules are not stable against small perturbations of input values.
• Non-gradient optimization methods should be used because the cost function

based on the number of errors is discontinuous.

Fuzzy systems overcome these problems using continuous membership func-
tions, but do they provide an adequate explanation of the data? Fuzzy membership
functions allow for a natural description of many features, providing large recep-
tive fields and thus simplifying the classification, so in principle they could provide
good explanations. In practice fuzzy rules are rarely successful in explaining the
data. For example, in the two recent books on neurofuzzy systems [4,5] many fuzzy
rules for different problems have been derived, but would a domain expert find any
of these rules useful? Problem of assessing the reliability of classification and of
understanding the data are not addressed in these and other books on the subject. It
is highly doubtful that fuzzy or even neurofuzzy systems would be able to compete
with other classifiers on the ground of their high accuracy only. Reasons for this
apparent failure of fuzzy adaptive systems to provide explanation of data are related
to the problems of:

• setting up and understanding the linguistic variables;
• complexity of rules the system generate;
• large number of rules generated by some systems;
• problems of finding the simplest set of rules due to overparametrization of adap-

tive fuzzy systems;
• existence of equivalent sets of rules (or sets of similar accuracy).

Quoting a rule counts as an explanation only if the number of rules is relatively
small and their accuracy is sufficiently high. Fuzzy and neurofuzzy systems ap-
ply membership functions to the input features, filtering information passed to the
classifier by creating large receptive fields. The multilayer perceptron (MLP) net-
works [10] use their first hidden layer to define combinations of inputs that – treated
as new input features – should transform the classification problem to a separable
one. The output neurons provide separating hyperplanes in the transformed space.
RBF networks [10] perform initial clusterization of the data using all features pro-
vided. None of these approaches is really directed at providing explanations at a
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higher level, with a transformed set of features. For that purpose some restrictions
on meaningful transformations of input features should be set first, combinations
of these features determined by an MLP-type layer, linguistic variables extracted
by a constructive network with transfer function capable of local response (such as
the bicentral functions [11]), and finally the outputs should be combined by a rule
layer. The C-MLP2LN network [12,13] has an aggregation layer (A-layer), linguis-
tic variables layer (L-layer), a rule layer (R-layer) and an output layer. This network
was used previously in data mining tasks [13] but it is also well suited as a general
architecture facilitating explanation of data.

Fuzzy rules involve a number of parameters determining position and shape of
the membership functions. To avoid overparameterization systems based on fuzzy
logic frequently use a fixed set of membership functions, with predetermined shapes.
Defining linguistic variables in such context-independent way amounts in effect to
a regular partitioning of the whole input space into convex regions. This approach
suffers from the curse of dimensionality [10], since withk linguistic variables in
d dimensions the number of possible input combinations isk d . Fuzzy rules simply
pick up those areas in the input space that contain vectors from a single class. With-
out the possibility to adapt membership functions to individual clusters in a single
rule fuzzy rules do not allow for optimal description of these clusters. Much better
results may be obtained with context-dependent linguistic variables created by some
neurofuzzy systems [8,13].

Overparameterization of fuzzy systems and lack of regularization methods [10]
commonly used in neural networks is responsible for high complexity of generated
rules and difficulties of finding the simplest set of rules. Let us take as an exam-
ple the Wisconsin breast cancer data [14] (available from the UCI machine learning
repository [15]). This dataset describes properties of cancerogenic cells using 9 at-
tributes with integer values in the range 1-10 (for example, featuref 2 is “clump
thickness” andf8 is “bland chromatin”). Fuzzy clustering methods or neurofuzzy
systems do not produce membership functions with reasonable linguistic interpre-
tation. The NEFCLASS neurofuzzy system [4], one of the best systems of its kind,
combined with fuzzy clustering, produces after simplification 4 rules of the form:

IF f1 = l ∧ f2 = l ∧ f3 = l ∧ f4 = l∧ f4 = l ∧ f5 = s∧
f6 = l ∧ f7 = l ∧ f8 = l ∧ f9 = s THEN malignant

Most fuzzy systems will produce much more complex sets of rules, but even the
rule shown above given as an explanation of observed data, with specific member-
ship functions for each attribute, may be too difficult for medical doctors to under-
stand and use. The simplest rules for this dataset found for the malignant class using
the C-MLP2LN are:

f2 ≥ 7∨ f7 ≥ 6 (95.6%)

These rules cover 215 malignant cases and 10 benign cases, achieving overall ac-
curacy (including the ELSE condition) of 94.9%. They could not be found using
decision trees (C4.5 [16] and SSV [17]) and other systems, but they are the easiest
to understand to the medical experts.
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Understanding the data may require the simplest description possible. This is
evident in another medical example of the Ljubliana cancer data [15], containing
286 cases, of which 201 are no-recurrence-events (70.3%) and 85 are recurrence-
events (29.7%). Each case is described by 9 attributes, with 2 to 13 different values
each. A single logical rule for the recurrence-events has been found by C-MLP2LN
system:

involved nodes=¬[0,2]∧ Degree-malignant = 3

With ELSE condition for the second class this rule gives over 77% accuracy in
crossvalidation tests. The rule is easy to interpret: recurrence is expected if the num-
ber of involved nodes is greater than two and the cells are highly malignant. More
complex and more accurate sets of rules may be found [13] for these datasets. Un-
fortunately the more complex the rules are the less likely it is that they represent
interesting knowledge. This is true especially for smaller datasets, where acciden-
tal correlations easily occur and rules cover small number of cases. An adequate
understanding of the data may require generation of several equivalent sets of rules.

In general the more complex the CI system is, the more difficult finding the
simplest solution will be, since all adaptive methods require some form of mini-
mization or iterative optimization procedures that are less reliable for larger num-
ber of parameters. Neurofuzzy systems frequently introduce additional fuzzification
and defuzzification layers, increasing the number of parameters significantly. These
layers are sometimes designed by hand so their parameters are fixed, but in effect
suboptimal linguistic variables are used, the system is far from being automatic and
the hidden layer performing classification has anyway more parameters, because
each continuos input is replaced by several quasi-discrete inputs.

Suppose that in a 2-dimensional problem two classes are separated with a deci-
sion border (using the data rescaled to [0,1] interval)x 1 + x2 = 1, i.e. the first class
is in the lower corner of the unit square and the second outside. A single neuron
will handle this problem with 2 weights and 1 bias. It would be difficult, if not
impossible, to find a membership functions for theN variables – for example by
evolving trapezoidal or other membership functions using genetic algorithms – that
could separate approximate correctly a planex1 + x2 + . . .xn = 1. Thus although in
principle neural networks and fuzzy systems are equivalent [18] in practice there
will be problems for which an approximation using any fuzzy system will converge
very slowly. The same is true for the MLP networks which for some data distribu-
tions may suffer from slow convergence. The importance of a proper choice of the
transfer functions in neural networks has been realized only quite recently [11].

Undoubtedly there are many industrial applications of fuzzy logic, although
they seem to be restricted to control problems [19]. Since global control models
are impossible to construct, the space of control parameters is divided into sub-
regions where appropriate actions are fired by rules; in essence fuzzy control is
based on local learning in multiple regions and the rules are simply identifying
these regions. The best way to solve such problems would be to construct neural
systems with weightsW (X) parametrized by the input vectorX , i.e. to construct
neural networksNN(X ;W (X)) which represent a family of mappings that change
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in different regions of the input space. For example, in a larger modular network
W (X) = WG(X ;Pk,σx0) may be defined for a number of reference pointsPk in the
input space. Networks appropriate for this region of space may then perform specific
actions. The architecture should be similar to the constructive RBF type of networks
(cf. [10,20,21]) with appropriate action conditions performed by the output nodes.

3 Black box systems, assessment of reliability and data
explanation

Neural systems usually do not provide explanation or even an assessment of reli-
ability of their decisions. The same is true for other CI methods, such as cluster-
ization, nearest neighbors or discriminant analysis (including Support Vector Ma-
chines) methods. Explanation or understanding of new data does not require full
data mining. It may be sufficient to relate the new case to known cases, estimate
probabilities for different classes, show how these probabilities depend on possible
inaccuracies of measurements and visualize the data (this is called “an explanatory
data analysis” in the statistical literature, cf. [22]). It is worthwhile to start searching
for the simplest description of the data in form of crisp logical rules; it that fails
more complex fuzzy rules should be produced and if that fails – i.e. if rules are
not sufficiently accurate or they become too complex – more complex, black box
classification models should be tried. In all cases given a new vectorX for evalua-
tion classification probabilities should be calculated and a diagnostic map should be
provided, showing this case in relation to others.

Finding the simplest description of data involves the following steps:

• Create good features by combining the existing ones; use methods of feature se-
lection, principal components (PCA), non-linear PCA [23], independent com-
ponents (ICA), or strong regularization enforcing skeletonization of the input-
hidden layer connections in neural network.

• Select linguistic variables [8] as subsets of discrete values or as interval[Xk,X ′
k].

• Extract logical rules from the data using neural, machine learning or statistical
techniques.

• Optimize linguistic variables ([Xk,X ′
k] intervals) using the extracted rules and

exploring the reliability/rejection rate tradeoff.
• Repeat the procedure until a stable set of rules is found.

These steps were described in details in [8,9,12,13]. The simplicity/accuracy
tradeoff is explored first: rough description of the data is made using appropriate
regularization parameters, with a hierarchy of more complex models following, until
optimal complexity (from the generalization point of view) of the rule base is found.
After selecting satisfactory level of data description another tradeoff is explored, be-
tween the reliability of predictions and the rejection rate of the classifier (number
of vectors in the “don’t know” class). LetP (Ci,Cj) be the confusion matrix for a
rule-based classifierM (the modelM containing intervals[Xk,X ′

k] and subsets defin-
ing linguistic variables). The number of wrong predictions minM

[
∑i�= j P (Ci,Cj)

]



262 W. Duch and Yoichi Hayashi

should be minimized simultaneously with maximization of the predictive power
maxM [Tr P (Ci,Cj)] of the classifier over all adaptive parameters of the modelM.
The following cost functionE(M) is minimized without constraints:

E(M) = γ∑
i�= j

P (Ci,Cj)−Tr P (Ci,Cj) ≥−n (1)

where the parameterγ determines a tradeoff between reliability and rejection rate.
Sets of rules of lower reliability make larger number of errors but have low rejection
rate. These two tradeoffs: simplicity/accuracy and reliability/rejection rate cannot
be determined automatically since they depend on the goals of the user.

Crisp rule based system does not allow to evaluate the probabilities of clas-
sification and, sinceP (Ci,Cj) depends in a discontinuous way on the parameters
of linguistic variables non-gradient minimization methods are required. Real input
valuesX are obtained by measurements that are carried with finite precision. The
brain uses not only large receptive fields for categorization, but also small receptive
fields to extract feature values. Instead of a crisp numberX a Gaussian distribution
GX = G(Y ;X ,SX) centered aroundX with dispersionSX should be used. Probabil-
ities p(Ci|X;M) may be computed for any classification modelM by performing a
Monte Carlo sampling from the joint Gaussian distribution for all continuous fea-
turesGX = G(Y;X,SX ). DispersionsSX = (s(X1),s(X2) . . . s(XN)) define the vol-
ume of the input space aroundX that has an influence on computed probabilities.
One way to “explore the neighborhood” ofX and see the probabilities of alternative
classes is to increase the fuzzinessSX definings(Xi) = (Xi,max −Xi,min)ρ, where the
parameterρ defines a percentage of fuzziness relatively to the range ofX i values.

With increasingρ values the probabilitiesp(Ci|X;ρ,M) change. Even if a crisp
rule-based classifier is used non-zero probabilities of classes alternative to the win-
ning class will gradually appear. The way in which these probabilities change shows
how reliable is the classification and what are the alternatives worth remembering.
If the probabilityp(Ci|X;ρ,M) changes rapidly around some valueρ0 the caseX is
near classification border and an analysis ofp(Ci|X;ρ0,si,M) as a function of each
si = s(Xi), i = 1. . .N is needed to see which features have strong influence on clas-
sification. Displaying such probabilites allows for a detailed evaluation of the new
data also in cases where analysis of rules is too complicated. A more detailed analy-
sis of these probabilities based onconfidence intervals andprobabilistic confidence
intervals has recently been presented by Jankowski [24,9]. Confidence intervals are
calculated individually for a given input vector while logical rules are extracted for
the wholetraining set. Confidence intervals measure maximal deviation from the
given feature valueXi (assuming that other features of the vectorX are fixed) that
do not change the most probable classification of the vectorX. If this vector lies
near the class border the confidence intervals are narrow, while for vectors that are
typical for their class confidence intervals should be wide. These intervals facilitate
precise interpretation and allow to analyze the stability of sets of rules.

For some classification models probabilitiesp(Ci|X;ρ,M) may be calculated
analytically. For the crisp rule classifiers [25] a ruleR [a,b](X), which is true ifX ∈
[a,b] and false otherwise, is fulfilled by a Gaussian numberGX with probability:
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p(R[a,b](GX ) = T ) ≈ σ(β(X −a))−σ(β(X −b)) (2)

where the logistic functionσ(βX) = 1/(1+exp(−βX)) hasβ = 2.4/
√

2s(X) slope.
For large uncertaintys(X) this probability is significantly different from zero well
outside the interval[a,b]. Thus crisp logical rules for data with Gaussian distribu-
tion of errors are equivalent to fuzzy rules with “soft trapezoid” membership func-
tions defined by the difference of the two sigmoids, used with crisp input value.
The slope of these membership functions, determined by the parameterβ, is in-
versely proportional to the uncertainty of the inputs. In the C-MLP2LN neural
model [13] such membership functions are computed by the network “linguistic
units” L(X ;a,b) = σ(β(X −a))−σ(β(X −b)). Relating the slopeβ to the input un-
certainty allows to calculate probabilities in agreement with the Monte Carlo sam-
pling. Another way of calculating probabilities, based on the softmax neural outputs
p(Cj|X;M) = Oj(X)/∑i Oi(X) has been presented in [9].

After uncertainty of inputs has been taken into account probabilitiesp(C i|X;M)
depend in a continuous way on intervals defining linguistic variables. The error
function:

E(M,S) =
1
2∑

X
∑

i

(p(Ci|X;M)−δ(C(X),Ci))2 (3)

depends also on uncertainties of inputsS. Several variants of such models may be
considered, with Gaussian or conical (triangular-shaped) assumptions for input dis-
tributions, or neural models with bicentral transfer functions in the first hidden layer.
Confusion matrix computed using probabilities instead of the number of yes/no er-
rors allows for optimization of Eq. (1) using gradient-based methods. This mini-
mization may be performed directly or may be presented as a neural network prob-
lem with a special network architecture. Uncertaintiessi of the values of features
may be treated as additional adaptive parameters for optimization. To avoid too
many new adaptive parameters optimization of all, or perhaps of a few groups ofs i

uncertainties, is replaced by commonρ factors defining the percentage of assumed
uncertainty for each group.

This approach leads to the following important improvements for any rule-based
system:

• Crisp logical rules provide basic description of the data, giving maximal com-
prehensibility.

• Instead of 0/1 decisions probabilities of classesp(Ci|X;M) are obtained.
• Inexpensive gradient method are used allowing for optimization of very large

sets of rules.
• Uncertainties of inputssi provide additional adaptive parameters.
• Rules with wider classification margins are obtained, overcoming the brittleness

problem of some rule-based systems.

Wide classification margins are desirable to optimize the placement of decision
borders, improving generalization of the system. If the vectorX of an unknown
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class is quite typical to one of the classesCk increasing uncertaintiessi of Xi inputs
to a reasonable value (several times the real uncertainty, estimated for a given data)
should not decrease thep(Ck|X;M) probability significantly. If this is not the case
X may be close to the class border and analysis ofp(Ci|X;ρ,si,M) as a function
of eachsi is needed. These probabilities allow to evaluate the influence of differ-
ent features on classification. If simple rules are available such explanation may be
satisfactory. Otherwise to gain understanding of the whole data a similarity-based
approach to classification and explanation is worth trying. Prototype vectors Ri are
constructed using a clusterization, dendrogram or a decision tree algorithm and a
similarity measureD(X,R) is introduced. Positions of the prototype vectors Ri, pa-
rameters of the similarity measuresD(·) and other adaptive parameters of the system
are then optimized using a general framework for similarity-based methods [26].
This approach includes radial basis function networks, clusterization procedures,
vector quantization methods and generalized nearest neighbor methods as special
examples. An explanation in this case is given by pointing out to the similarity of
the new caseX to one or more of the prototype cases Ri.

The final step for data explanation requires visualization of the data in the neigh-
borhood ofX. Although there are many interesting methods of vizualization (cf.
[22]) its seems that the most appropriate here are the methods based on multi-
dimensional scaling (MDS, [27]). In essence these methods try to present a map
of N-dimensional objects in two (or three) dimensions, trying to preserve all dis-
tance relationsD(Xi,X j) in the original space. This is achieved by minimization
of some form of topographical measure of distortion, for example the StressS(x)
introduced by Kruskal:

S(x) =
Nt

∑
i j

wi j ·
(
D̂(Xi,X j)−d(xi,x j)

)2
(4)

whered(xi,x j) are distances in the low-dimensional target space andwi j are user-
defined weights. Similar formula is used [28] to map a single point relatively to
an existing map. An interactive program for such vizualization has been written
[28], allowing for creation of maps (cf. Fig. 4) by zooming on the neighborhood of
X. The zoomed MDS diagrams may be correlated with estimations of probability
p(Ci|X;ρ,M) and with more detailedp(Ci|X;ρ,si,M) graphs presenting confidence
intervals, giving better evaluation of new data.

4 Real-life examples

Two examples are shown here: psychometric data [29] and the Telugu vovel data
[5]. In the first case rule-based approach to data understanding has been success-
ful, in the second a prototype-based approach followed by visualization has been
necessary.

The psychometric data [29] has 14 continuous attributes obtained by combining
answers to questionnaires. They measure tendencies towards hypochondria, depres-
sion, hysteria, psychopathy, paranoia, schizophrenia, etc. The datasets have over
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Fig. 1. An example of a rule with Gaussian uncertainties of conditions displayed.

1000 cases belonging to 27 classes (normal, neurotic, drug addicts, schizophrenic,
psychopaths, organic problems, malingerers, persons with criminal tendencies etc.)
determined by expert psychologists. Crisp logical rules for these data were gen-
erated using C4.5 classification tree [16], a very good classification system which
may generate logical rules, and the Feature Space Mapping (FSM) neural network
[20,21], since these two systems were the easiest to use on such complex data. Sta-
tistical estimation of generalization by 10-fold crossvalidation gave for crisp unop-
timized FSM rules 82-85% correct answers, for C4.5 decision tree the accuracy was
in the 79-84% range. If Gaussian uncertainty is included rule conditions become
fuzzy (see Fig. 1) and optimization of probabilities improves the FSM crossvali-
dation results up to 90-92%. The IncNet model, an ontogenic neural network [30],
obtained 93-95% accuracy in crossvalidation tests. Although it is not a rule-based
system calculation of probabilities and visualization described below allows to eval-
uate the new data quite well also with such black-box systems.

Fig. 2 shows the probabilities of a well-behaved case belonging to the “organic
problem class” as a function ofρ. The two plots in Fig. 3 show the probability as a
function of two feature values for the case in which a sharp change in probabilities
with increasingρ has been observed, essentially mixing psychopathy, paranoia and

Fig. 2. Probabilities of different classes as a function of assumed uncertaintiesρ shown in
percents of the input feature range; this case is uniquely classified as “organic problems”.
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10. Psychasthenia

Fig. 3. Psychopathy is quite probable here, but small perturbations of feature 1 change it into
a maniac state. In the lower picture paranoia diagnosis lies within the schizophrenia class.

schizophrenia classes. Probabilities for the most probable class at the measuredX
value and for the second most probable class are displayed. Seeing the mixture of
schizophrenia and paranoia in Fig. 3 an expert may inferred that it is the case of
schizoidal paranoia, which was not present as one of the classes in the data base.

The Telugu vovel data [5] give an example for which no rule-based understand-
ing of the data is possible. Each vovel is described by intensities of 3 formants,
therefore one may view the data in 3 dimensions and notice a strong overlap among
the 6 classes – in Fig. 4 MDS maps of this data are displayed. The results of some
tests are collected in Table 1. Unfortunately the variance has not been given in ref.
[5] and since only two-fold crossvalidation was done for some models it may be
quite large (even well-behaved models show on this dataset differences exceeding
5% due to the data partitioning). Using fuzzy rules or other sophisticated logical
description in this case does not explain anything. A possible explanation of what
makes one speech sound different than the other could either invoke a rule – but the
number of rules produced by different systems is rather large and they are not too
accurate, so no good rules exist here – or evaluate similarity to a prototype case.

FSM [20,21] neurofuzzy system with rectangular functions produces a large (75
or more) number of neurons, giving the 10-fold stratified crossvalidation (10xCV)
accuracy of about 80%. The simplest FSM prototype-based solutions with Gaus-
sian weighting of the Euclidean distance has 6 prototypes (one per class) and in the
10xCV test it gives 72.4% accuracy (74% on the whole dataset). Although this ac-
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Table 1. Comparison of results on Teluguvovel data. 10xCV means 10-fold stratified cross-
validation test, Manhattan is the distance function.

System Accuracy Remarks

kNN 88.1± 0.4% k=3, Manhattan, 10xCV, this paper

FSM 87.4± 0.5% Gauss, about 65 neurons, 10xCV, this paper

SSV 86.0% 22 rules, 10xCV, this paper

kNN 86.1± 0.6% k=3, Euclidean, 2xCV, this paper

FSM 85.2± 1.2% Gauss, over 40 neurons, 2xCV, this paper

MLP 84.6 % 2xCV, 10 neuronów, Ref. [5]

Fuzzy MLP 84.2 % 2xCV, 10 neuronów, Ref. [5]

SSV 83.3± 0.9 % 2xCV, beam search, this paper

Bayes Classifier 79.2 % 2xCV, Ref. [5]

Fuzzy Kohonen 73.5 % 2xCV, Ref. [5]

Fig. 4. The MDS map of the Teluguvovel data – classes strongly overlap.

curacy is not the highest 6 prototypes seem to be sufficient to explain main features
of this data. Adding more neurons to the FSM network (the algorithm is construc-
tive and the number of neurons is regulated by the desired accuracy) is equivalent to
using more than one prototype per class.

5 Discussion

Acceptable explanations depend on the particular domain and the type of data an-
alyzed. Machine Learning community has focused on artificial cases with a few
symbolic attributes, for which simple logical rules are sufficient. Rule-based classi-
fiers are useful only if rules are reliable, accurate, stable and sufficiently simple to be
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understood. In real data mining problems many continuous-valued attributes may be
present and large sets of rules may be needed. Most classifiers are unstable [31] and
lead to rules that are significantly different if the training set is slightly changed.
Such rules contain little useful information and in fact may be rather misleading.
Even if stable and robust rules are found [13] the user should be warned about po-
tential misclassifications, other probable classification possibilities and influence of
each feature on the classification probability.

Interpretation of new cases requires something more than a set of rules and
yes/no decisions. Through correlation of rules, investigation of class probabilities
in the neighborhood of a new case, confidence intervals for interesting features and
interactive visualization the new data may be understood much better in relation to
the whole database of known cases. For some classifiers probabilitiesp(Ck|X;ρ,M)
may be estimated analytically, for other classifiers Monte Carlo estimations are nec-
essary. Since one new case is evaluated at a time the cost of such simulations is not
so important. In practical applications users are interested in relevant features and
may rarely be satisfied with answers to questions “why” based on quotation of log-
ical rules belonging to a complex set. Similarity to prototypes, or case-based inter-
pretation, is an alternative to logical rule-based systems. Expert systems in medical
and other fields should help to understand and evaluate new cases, not just classify it.
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