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Abstract: Similarity-based methods (SBM) are a generalization of the
minimal distance (MD) methods which form a basis of several machine
learning and pattern recognition methods. Investigation of similarity leads
to a fruitful framework in which many classification, approximation and
association methods are accommodated. Probabilityp(C|X;M) of assign-
ing classC to a vectorX, given a classification modelM, depends on adap-
tive parameters and procedures used in construction of the model. Sys-
tematic overview of choices available for model building is described and
numerous improvements suggested. Similarity-Based Methods have nat-
ural neural-network type realizations. Such neural network models as the
Radial Basis Functions (RBF) and the Multilayer Perceptrons (MLPs) are
included in this framework as special cases. SBM may also include several
different submodels and a procedure to combine their results. Many new
versions of similarity-based methods are derived from this framework. A
search in the space of all methods belonging to the SBM framework finds
a particular combination of parameterizations and procedures that is most
appropriate for a given data. No single classification method can beat this
approach. Preliminary implementation of SBM elements tested on a real-
world datasets gave very good results.

Keywords: similarity-based methods, kNN, optimization, feature se-
lection, classification, approximation, associative memory

1. Introduction.

Recently a general framework for similarity-based methods has been introduced (Duch
1998). This framework is extended here, leading to new versions of similarity-based
methods, including neural-like realizations. In pattern recognition the nearest-neighbor
methods (Krishnaiah and Kanal 1982) are examples of similarity-based methods, in
statistics many clusterization methods belong to this group, in artificial intelligence the
instance-based reasoning, memory-based reasoning or case-based reasoning methods
(Mitchell 1997) evaluate similarity to a set of prototype objects, and in neural networks
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many models are in fact variants of SBM. As a first step towards a general computa-
tional intelligence theory integrating many learning methods within a single framework
various procedures and choices involved in creating similarity-based models are de-
scribed here. These models operate on the same principle: given a set of objects create
from them a set of reference objects{R} and introduce a similarity measure allowing
to relate new query objectX to the reference ones.

Four basic problems that such models may solve are: assignX to predetermined
specific classes, mapX to some numerical values, complete missing features ofX or
create clusters that are in some respect homogenous. The first of these, supervised
classification, has perhaps the widest applications and therefore the outline of the SBM
framework is presented from this perspective. Mapping problems – approximation
and extrapolation – may be treated as classification with an infinite number of classes.
Selecting a set of the most similar reference vectors to a given vectorX a number of
interpolation procedures may be applied to synthesize an approximate mapping. The
same is true in the third case, completion of missing values. Known elements of the
objectX are used to find similar reference vectors and the missing parts are completed
using approximation or classification procedures. SBM may thus serve as a basis of
associative memories. Finally clusterization or unsupervised classification problems
require evaluation of similarity and thus also belong to the SBM. All of these methods
may be useful in control problems.

A review of many approaches to classification and comparison of performance of
20 methods on 20 real world datasets has been done within theStatLog European
Community project (Michieet al. 1994). More recently the accuracy of 24 neural-
based, pattern recognition and statistical classification systems has been compared on
11 large datasets by Rhower and Morciniec (1996). No consistent trends have been
observed in the results of these large-scale studies. For each classifier one may find
a real-world dataset for which the results will be excellent and another one for which
the results will be quite bad. Therefore in real world applications a good strategy is to
find the best classifier that works for a given data. Frequently simple methods, such
as the nearest neighbor methods or n-tuple methods (Rhower and Morciniec 1996),
are among the best. Selecting from the simplest classification models one should add
different types of optimization parameters and procedures developing the model in the
most promising direction in the space of all possible models belonging to the SBM
framework.

Some of the best classification algorithms applicable to pattern recognition prob-
lems are based on thek-nearest neighbor (k-NN) rule (Krishnaiah and Kanal 1982).
Each training data vector is labeled by the class it belongs to and is treated as a refer-
ence vector. During classificationk nearest reference vectors to the unknown (query)
vectorX are found, and the class of vectorX is determined by a ‘majority rule’. The
probability of assigning a vectorX to a classCi, i = 1..K is p(Ci|X;k) = Ni/k, whereNi

is the number of nearest vectors belonging to theCi class,∑K
i Ni = k. If k = 1 a single

nearest neighbor determines the class of an unknown vector, i.e.p(C i|X) = 0 or 1. The
asymptotic error rate of thek-NN classifier in the limit of largek and large number of
reference vectors becomes equal to the optimal Bayesian values (Krishnaiah and Kanal
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1982). In real situations the number of reference vectors is limited and small values of
k may work better, thereforek should be optimized for each dataset.

Because thek-NN method is so simple it is frequently used as a standard refer-
ence for other classificators (surprisingly, very few computer programs fork-NN are
around). Computational complexity of the actual classification is high, demanding for
n reference vectors calculation of∼ n2/2 distances and findingk smallest distances
among them. Although Laaksonen and Oja (1996) claim that “For realistic pattern
space dimensions, it is hard to find any variation of the rule that would be significantly
lighter than the brute force method” various hierarchical schemes of partitioning the
data space or hierarchical clusterization are quite effective in reducing the complex-
ity of search fromO(n2) to O(n logn). Even without any speedup of computations
datasets with several thousand of training patterns do not present any problems on
modern personal computers. The search for the nearest neighbors is easily paraleliz-
able and training time (selection of optimalk) is relatively short. Nearest neighbor
methods are especially suitable for complex applications, where large training datasets
are available. They are also used in the case-based expert systems as an alternative to
the rule-based systems (cf. Waltz 1995, for more than 200.000 reference patterns and
millions of vectors for classification).

Only one neural model proposed so far is explicitly based on the nearest neighbor
rule: the Hamming network (Lippmann 1987, Floreen 1991) computes the Hamming
distances for the binary patterns and finds the maximum overlap (minimum distance)
with the prototype vectors, realizing the 1-NN rule. Although other similarity-based
methods presented here have natural neural-network type realizations we will concen-
trate more on presentation of the general framework rather than on the network imple-
mentation issues, since at this initial stage of the theory development implementation
issues are of secondary importance. We will also not spend much time on the actual
methods of learning, based here on parameter optimization. Other approaches to learn-
ing (Mitchell 1997) may be useful in more complex situations. In the next section
general framework for SBM is presented and many novel elements outlined at each
step of the classification process. The framework accommodates well-known classi-
fication methods and leads to new, unexplored methods. Examples of new methods
and relations with known classification models, including some neural network mod-
els, are elucidated in the third section. Discussion and references to the related work
are presented in the last section.

2. A framework for the similarity-based methods

BelowN is the number of features,K is the number of classes, vectors are in bold faces
while vector components are in italics.

The following steps may be distinguished in the supervised classification problem
based on similarity estimations:
1) Given a set of objects (cases){O p}, p = 1..n and their symbolic labelsC(O p),
define useful numerical featuresX p

j = Xj(Op), j = 1...N characterizing these objects.
This preprocessing step involves computing various characteristics of images, spatio-
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temporal patterns, replacing symbolic features by numerical values etc.
2) Find a measure suitable for evaluation of similarity or dissimilarity of objects repre-
sented by vectors in the feature space,D(X,Y).
3) Create a reference (or prototype) vectorsR in the feature space using the similarity
measure and the training setT = {X p} (a subset of all cases given for classification).
4) Define a function or a procedure to estimate the probabilityp(C i|X;M), i = 1..K of
assigning vectorX to classCi. The set of reference vectors, similarity measure, the
feature space and procedures employed to compute probability define the classification
modelM.
5) Define a cost functionE[T ;M] measuring the performance accuracy of the system
on a training setT of vectors; a validation setV composed of cases that are not used
directly to optimize modelM may also be defined and performanceE[V ;M] measuring
generalization abilities of the model assessed.
6) Optimize the modelMa until the cost functionE[T ;Ma] reaches minimum on the
setT or on the validation setE[V ;Ma].
7) If the model produced so far is not sufficiently accurate add new procedures/parameters
creating more complex modelMa+1.

8) If a single model is not sufficient create several local modelsM (l)
a and use an in-

terpolation procedure to select the best model or combine results of a committee of
models.

All these steps are mutually dependent and involve many choices described below
in some details. The final classification modelM is build by selecting a combination of
all available elements and procedures. A general similarity-based classification model
may include all or some of the following elements:

M = {X(O),∆(·, ·),D(·, ·),k,G(D),{R},{pi(R)},E[·],K(·),S(·)), where:
X(O) is the mapping defining the feature space and selecting the relevant features;
∆ j(Xj;Yj) calculates similarity ofX j, Yj features,j = 1..N;
D(X,Y) = D({∆ j(Xj;Yj)}) is a function that combines similarities of features to com-
pute similarities of vectors; if the similarity function selected has metric properties the
SBM may be called the minimal distance (MD) method.
k is the number of reference vectors taken into account in the neighborhood ofX;
G(D) = G(D(X,R)) is the weighting function estimating contribution of the reference
vectorR to the classification probability ofX;
{R} is a set of reference vectors created from the set of training vectorsT = {X p} by
some selection and optimization procedure;
pi(R), i = 1..K is a set of class probabilities for each reference vector;
E[T ;M] or E[V ;M] is a total cost function that is minimized at the training stage; it
may include a misclassification risk matrixR (Ci,Cj), i, j = 1..K;
K(·) is a kernel function, scaling the influence of the error, for a given training exam-
ple, on the total cost function;
S(·) is a function (or a matrix) evaluating similarity (or more frequently dissimilarity)
of the classes; if class labels are soft or are if they are given by a vector of probabilities
pi(X) classification task is in fact a mapping.S(Ci,Cj) function allows to include a
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large number of classes, “softening” the labeling of objects that are given for classifi-
cation.

Various choices of parameters and procedures in the context of network computa-
tions leads to a large number of similarity-based classification methods. Parameters
of each model are optimized and a search is made in the space of all modelsM a for
the simplest and most accurate model that accounts for the data. Optimization should
be done using validation sets (for example in crossvalidation tests) to improve gen-
eralization. Starting from the simplest model, such as the nearest neighbor model,
qualitatively new “optimization channel” is opened by adding the most promising new
extension, a set of parameters or a procedure that leads to greatest improvements. Once
the new model is established and optimized all extensions of the model are created and
tested and a better model selected. The model may be more or less complex than the
previous one (since feature selection or selection of reference vectors may simplify the
model). The search in the space of all SBM models is stopped when no significant
improvements are achieved by new extensions.

Steps involved in setting up a SBM model are presented below in a detailed way.
Examples of well-known classification models and new models that result from the
SBM framework are given in the next section.

2.1. Feature space and similarity of features

Frequently the database contains a numerical description of the objects and the prepro-
cessing step involves only rescaling or standardization of the input data. Features used
should allow to assign a new vectorX to one of the classes with high reliability. The
number of features created by theX(O) mapping should be as small as possible to avoid
the “course of dimensionality” (Bishop 1995). In some cases a group of features of the
same type may be aggregated and replaced by a single feature, for example using linear
combinationX j = ∑l s jlXl . Thes jl scaling coefficients in this combination may be es-
timated in two ways. First method is based on inexpensive local approach (Aha 1998),
trying to increase some measure of information contents for the aggregated featureX j,
for example the percentage of correctly classified training samples using only theX j

feature. Second method is global, treatings jl as adaptive parameters that are optimized
simultaneously using the total cost functionE[T ;M]. In the multi-layer perceptron
(MLP) network with two hidden layers the first layer should essentially perform aggre-
gation and may sometimes be replaced by a linear layer. More sophisticated approach,
used in Support Vector Machines, is based on non-linear projection of feature vectors
(Schölkopf et al. 1998).

In some methods featureX j taking the symbolic valueX j = τk j is treated directly
using an appropriate similarity function∆ j(τk j ,τl j ) that may be defined as follows.
Define a characteristic class functionΓm(X) = 1 if X ∈ Cm, otherwiseΓm(X) = 0.
The vectorX with featureX j = τk j is denoted asX(Xj = τk j ). The number of vectors
belonging to the classm with X j = τk is Nm(Xj = τk j ) = ∑X Γm(X(Xj = τk j )) and the
total number of such vectors isN(X j = τk j ) = ∑m Nm(Xj = τk j ). The ratio of these two
numbers estimates the probabilityp(Cm|Xj = τk j ) = Nm(Xj = τk j )/N(Xj = τk j ) that
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given the symbolic valueτk j of featureX j the whole vector belongs to the classCm.
Symbolic features that have similar probabilities should have high similarity:

∆ j(Xj = τk j ,Yj = τl j )
α = ∑

m
|p(Cm|Xj = τk j )− p(Cm|Yj = τl j )|α (1)

whereα is an arbitrary exponent. Similarity of the two symbolic values of featurej is
the highest (or dissimilarity is lowest,∆ j(τk j ,τl j ) = 0) if both valuesτk j ,τl j predict the
same probabilities. The generalized Value-Difference Metric (VDM) for vectors with
symbolic values is defined as:

DVDM(X,Y)α = ∑
j

s j∆ j(Xj = τk j ,Yj = τl j )
α (2)

Since many classification methods require numerical inputs it is convenient to re-
place symbolic with numeric values. Replacing symbolic featureX j with K-dimensional
vector of probabilitiesp(Ci|X(Xj = τk j )), i = 1..K allows to compute the same similar-
ity values:

∆ j(τk j ,τl j )
α =

K

∑
m=1

|p(Cm|Xj = τk j )− p(Cm|Yj = τl j )|α (3)

Thus∆ j(·, ·) is a Minovsky’s distance function inK-dimensional space. Note that
since for two classesp(C1|X)+ p(C2|X) = 1 only one probabilityp(C1|X) is sufficient
to compute similarity:

∆ j(τk j ,τl j )
α = 2|p(C1|X(Xj = τk j ))− p(C1|Y(Yj = τl j ))|α (4)

The number of numerical features is the same as the number of symbolic features. For
more than two classes (K > 2) the absolute value in the sum above makes it difficult
to use onlyK− 1 probabilities. In this case to avoid growth of the dimension of the
feature space the Value-Difference Metric Eq. (2) should be used directly (cf. Wilson
and Martinez 1997), or other methods that do not preserve probabilistic estimations of
similarity may be used (cf. Aha 1998, Gra¸bczewski and Duch 1999).

2.2. Similarity measures and feature scaling

Calculation of similarities is most often reduced to the Euclidean metric for continuous
inputs and Hamming metric for binary inputs. In a more general approach let us first
define one-dimensional feature similarity functions∆ j(Xj,Yj), for example:

∆ j(Xj,Yj) = Xj−Yj a simple difference (5)

∆ j(Xj,Yj) = |Xj−Yj| an absolute value of the difference (6)

∆ j(Xj,Yj) = Xj−Yj
Max j−Min j

renormalized difference (7)

∆ j(Xj,Yj) = Xj−Yj
4σ j

standardized difference (8)

∆ j(Xj,Yj) = δ(Xj,Yj) overlap difference (9)
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where in the last case Kroneker delta is used. Feature similarity may also be computed
as the probabilistic value differences, Eq. (2). Similarity is defined in this case via a
data-dependent matrix with the number of rows equal to the number of classes and the
number of columns equal to the number of features. Generalization for continuous val-
ues requires a set of probability density functionsp i j(x), with i = 1..K, j = 1..N. This
distance function may be used for symbolic values and combined with other distance
functions for continuous attributes.

Generalized Minkowski’s metric involves two exponents,α andβ, although fre-
quently a single exponentα = β is used. Typical distance function compute:

D(X,Y)β =
N

∑
j

∆ j(Xj,Xj)α (10)

D(X,Y) = max
j

∆ j(Xj,Yj) Maximum Value (11)

Scaling factors multiplying one-dimensional similarity functions allow to include dif-
ferent contributions of different attributes and are very useful global parameters. Minkowski’s
distance with the scaling factors is defined as:

D(X,Y;s)β =
N

∑
j

s j∆ j(Xj,Yj)α ; s j ≥ 0 (12)

Euclidean metric corresponds toα = β = 2, which is completely isotropic, and
Manhattan metric toα = β = 1, which is less sensitive to the directions parallel to the
axis than to the directions between the axis. In fact the unit contour is a circle for
Euclidean, a square with vertices in(0,±1) and(±1,0), approaching a square with
vertices at(±1,±1) for largeα = β and a concave 4-arm star forα = β going to zero.

Methods of selecting optimal scaling factors for features were reviewed by Wettsche-
recket al. (1997a), where a five-dimensional framework to characterize different meth-
ods of scaling features has been proposed. Scaling is the simplest way of pre-processing
the features. The scaling factors facilitate feature selection in an automatic way. Admit-
ting only s j = 0,1 allows for simplified optimization of the scaling factors for feature
selection.

Using the scalar product and the norm:

〈X|Y〉=
N

∑
j=1

XjYj; ||X||2 = 〈X|X〉 (13)

several other distance functions are defined:

Dc(X,Y) = 1− 〈X|Y〉
||X||||Y|| Cosine distance (14)

Dd(X,Y) = 1− 2〈X|Y〉
||X||2+||Y||2 Dice distance (15)

DJ(X,Y) = 1− 〈X|Y〉
||X||2+||Y||2−〈X|Y〉 Jaccard distance (16)

DC(X,Y) = ∆ j(Xj ,Yj)
∆ j(Xj ,−Yj)

generalized Camberra distance (17)
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Additional parameters that may be introduced in similarity measures are either
global or local (different for each reference vector). In some applications (for ex-
ample in psychology) similarities are not symmetric. The simplest extension to non-
symmetric similarity function is obtained by introducing different scaling factors, de-
pending on the sign ofX j−Yj difference, for example:

Dn(X,Y;s)α =
N

∑
j

(max(0,s j+(Xj−Yj))−min(0,s j−(Xj−Yj)))
α (18)

where two separate scaling factorss j+,s j− ≥ 0 are used. This function provides 2N
adaptive parameters. Mahalanobis distance (Bishop 1995) is obtained by applying a
linear transformation to the input vectors. Alternatively, a metric tensorG i j = G ji is
introduced, providingN(N +1)/2 adaptive parameters:

D(X,Y;G)2 =
N

∑
i, j

Gi j(Xi−Yi)(Xj−Yj) (19)

Any adaptive system may provide a distance function for similarity-based methods.
For example, a typical MLP network may be trained on the differences of pairs of
vectors{X−Y}, learning to predict the distance between the classes||C(X)−C(Y)||.
The output of the neural network is then used ink-NN or other similarity-based method
(cf. Chiu and Kavanaugh 1997 where similar idea is pursued). A better way is to give
an MLP bothX and X −Y = {d j(Xj)− d j(Yj)} as input vectors, whered j(·) is a
set of the feature pre-processing functions (in the simplest case scaling factors). A
non-symmetric similarity functionD(X−Y;X), smoothly changing between different
regions of the input space, is obtained iteratively: for each training vectork nearest
neighbors are selected using initial similarity estimation, and after the first epoch of
neural training the process is repeated using the new similarity function. Thus MLP
mappings may be used to create similarity functions most appropriate for a given data.

Minimization of in-class distances and maximization of between-class distances
is used in some statistical methods (for example Fisher’s discrimination). A distance
function with such properties should be useful in similarity-based methods. A function
of this sort is based on a combination of sigmoidal functions in each dimension:

d j(Xj;p) = d j(Xj;aj,b j,cj) =
Kj

∑
l=1

a jlσ(b jlXj + c jl) (20)

whereKj determines the number of steps in the smoothed sigmoidal step function
(Fig. 1). Using this transformation with the Minkowski’s metric a network of nodes
computing such distances may be used for classification or prediction as any other
neural network. It also could be used for extraction of logical rules from data, either
fuzzy rules or – in the limit of high slopes – crisp logical rules. So far these ideas have
not been tried in practice.
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Figure 1. Sum of 3 sigmoidal functions provides a useful distance function allowing to
minimize in-class and maximizes between class distances.

Calculation of distances may also be parameterized in a different way around each
reference vector, providing a large number of adaptive parameters. Local coordinate
systems with their origin placed at the reference vectors may provide either local scal-
ing factors or local metric tensors. In specialized applications (for example in speech
recogniton or handwritten letters recognition) invariant similarity measures are used
– the “elastic matching” is defined by the shortest distance between two objects that
are distorted in all possible ways preserving their identity (class). Simardet al. (1993)
introduced a simplification of this idea by measuring the distance between the tangent
planes for the prototypes.

2.3. Feature selection

Scaling factors in the similarity function Eq. (12) allow for feature selection and fea-
ture scaling but since the global optimum of a cost function may be difficult to find
(Duch and Grudzi´nski 1999b) simpler feature selection procedure may be useful. Many
methods of feature selection and estimation of optimal scaling factors for features were
reviewed by Wettscherecket al. (1997). These methods either iteratively optimize the
scaling factors on the performance basis or assign fixed scaling factors calculating mu-
tual information between the values of features and the class of training samples or by
summing probabilities (estimated using frequencies) of training vectors with non-zero
values of features for a given class (per category feature importance). These scaling
factors after binarization are used to select features.
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Several simple feature selection procedures have been developed and tested specif-
ically for the similarity-based methods (Duch and Grudzi´nski 1999b). In the feature-
dropping algorithm features are removed consecutively, one at a time, and the best-first
search (BFS) strategy is used. To achieve good generalization the leave-one-out test is
performed on the training file and the change in accuracy is noted. Feature leading to
the highest improvement of classification accuracy on the training file is selected as the
least important and removed from the input set. If there is no improvement the feature
that leads to a minimal degradation is selected. At each step all the remaining features
are evaluated. At the end of the selection procedure all features are ranked according
to their importance.

An approximate ranking of features is done at a lower cost. Assuming that features
are independent and the effects of feature removal are additive only one tests for each
feature is done to determine the ranking. To make the method more robust features are
ranked after averaging the results of crossvalidation tests with a single feature removed.
An alternative is to perform the BFS feature-dropping algorithm using only a subset of
features identified as promising during the approximate evaluation, for example using
those features that may be removed without degradation of the accuracy. Other search
strategies, such as the beam-search, may be used if the number of features is not too
large. After calculation of feature ranks crossvalidation tests with firstM best features
are performed forM = 1..N. Usually the best results are obtained with those features
that on average were found useful (did not increase the accuracy after being dropped).

Search strategies may also be used for feature weighting. The cost function is sim-
ply the number of classification errors. Since features have real-valued weights they
have to be initially quantized, either with fixed precision or precision that is steadily in-
creased during the progress of the search procedure. Non-gradient optimization meth-
ods that may be used for optimization of discontinuous cost function are expensive and
may require a large number of evaluations of the function for convergence. Search
methods for feature weighting are worth trying. Three such methods have been devel-
oped (Duch and Grudzi´nski 1999b): adding features starting from a single one, drop-
ping features starting from all features and tuning the scaling factors, using the search
procedure with systematic increase of the precision of the scaling factor’s quantization.

Feature selection may be combined with regularization of the classification model.
To lower the complexity of the model the cost function should include an additional
penalty term, such as the sum of alls2

j . Unrestricted optimization will of course lead
to a very small values of all factors, therefore one should fix the scaling factor of
the most important attribute at 1, optimizing over all other attributes (renormalization
of the scaling factors is an alternative, but more complicated, solution). Features for

which the product of the scaling factorss j maxik |X (i)
j −X (k)

j | is small may be deleted
without significant loss of accuracy – after additional optimization of the scaling factors
accuracy may even increase. In the framework of Wettscherecket al. (1997a) these
methods use feedback, do not change feature representation, use global weights, do not
use task specific knowledge and perform both feature selection and feature weighting.

Features may be selected globally, for all classification models or for all classes,
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leading to one set of fetures. For models that specialize in discrimination between pairs
of classes or between a given class and all others optimal features should be selected
independently.

2.4. Missing values

The Value-Difference Metric treats the missing values like any other symbolic values,
but if the missing feature is not symbolic it cannot be used directly.Ad hoc procedures
based on replacing the missing values with class averages, the most frequent values,
arbitrary constants, or ignoring these values, should be avoided. In statistics analysis
of independent surveys in which some questions are not answered by some respon-
dents and some questions are not asked in some surveys is known as the “multiple
imputation” problem (Rubin 1996). Assumptions about normal distributions used in
the multiple imputation theory are not always valid.

Methods belonging to the SBM framework, such as the nearest neighbor method,
may be used as associative memories in a natural way. Any part of the input vectorX =
(Xd ,Xu) may be used to estimate the unknown input valuesX d once the classification
model is created. In the simplest case the undefined partX u is predicted interpolating
the values of nearest neighbors for the dominating class. Optimization of the model
to increase classification accuracy in theX d subspace should improve results ofX u

prediction.
An iterative technique of finding the missing values is recommended. In the first

step a classification modelM is created using the training vectors that do not contain
missing features or using the largest subspace of features without missing values. This
initial model is than used to calculate the probability of unknown valuesX u by maxi-
mization of:

p(Xu|Xd ;M) = max
u′,i

p(Ci|(Xu′ ,Xd);M) (21)

i.e. searching for the maximum of the probability given by the modelM in the subspace
of undefined features, with fixed point in theXd subspace.

At a later stage, once all elements of the initial model are defined, feature selec-
tion and feature weighting procedures may be added. These procedures are closely
connected with the definition of similarity measures.

2.5. Selection and weighting of reference vectors

SBM models may use all training data as the reference vectors. Reducing the size of
the reference set leads to models of lower complexity, speeds-up classification and min-
imizes the memory requirements (this is important not only in real-time applications –
optimization of some parameters may require many evaluations of the cost function).
It also helps to improve generalization capabilities of the classification system, espe-
cially for noisy data. Moreover, eliminating redundant cases and leaving only the most
interesting prototypes may sometimes allow to understand the structure of the data,
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providing an alternative to the rule-based classifiers. Systems designed for the on-line
learning, where the number of the incoming vectors may in principle be infinite, must
use partial memory (cf. Michalski 1999), selecting the best prototypes.

Three groups of reference set selection algorithms may be distinguished: clusteri-
zation based algorithms, algorithms starting from the whole set and algorithms starting
from the empty set. K-means, dendrograms or other clusterization techniques may be
used to select a relatively small number of initial reference vectors close to the cen-
ters of data clusters. Classification accuracy is checked on the remaining set and each
wrongly classified vector is moved from the training to the reference set. Variants of
this approach may use a validation set to determine best candidates for the reference
set.

An alternative approach to selection of reference vectors that does not require initial
clusterization starts from the whole training set,{R} = T . Vectors that have allk
nearest vectors from the same class are then removed from the reference set (k should
be relatively large here, for examplek = 10). Removed vectors are far from cluster
borders; all test vectors that fall in their neighborhood will be anyway unambiguously
classified. This approach leads to a “hollow” cluster representation, leaving in the
reference set only those vectors near the cluster borders. Variants of this approach may
start with a large number of neighborsk ′ to remove vectors near the centers of clusters
first, and decreasek′ to the finalk value in a few steps. Noisy data contains some
training vectors that are surrounded by neighbors from different class; to remove them
from the reference set vectors that have allk−1 neighbors from the same class and a
single neighbor from another class should also be removed.

Another useful algorithm to select good reference vectors near class borders starts
from the empty reference set. For every training vectorX that belongs to the class
C(X) it findsk nearest vectors from classesCi 
= C(X). Those vectors are moved to the
reference set. This algorithm also leaves in the reference set only vectors near the class
borders.

In the SBL-PM (Similarity-Based Learner – Partial Memory) algorithm introduced
recently (Grudzi´nski and Duch, 2000) training vectors are sequentially removed and
the prediction accuracy of the system on the whole training set is calculated after each
removal. If the accuracy drops below a user-defined threshold, relative to the result of
the leave-one-out test on the whole training set, the removed vector is placed in the ref-
erence set; otherwise it is eliminated. Unfortunately because of the high computational
costs this method may be used only for relatively small datasets or with classification
models that have few adaptive parameters only, such as thek-NN method. More so-
phisticated methods, for example GIGA, using genetic algorithm for selection of the
reference set (Fuchs 1996), have even higher computational demands, but the results
are not necessarily better.

In the on-line version of the method the system has to decide whether a new train-
ing case, coming from the input stream, should be added to the reference set (partial
memory of past cases). An obvious approach, used in the IB2 procedure (Ahaet al.
1991) is to check whether each new instance received is correctly classified using the
reference set created so far and add it to this set only if it leads to an error. To make this
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algorithm more resistant to noise one may introduce a “candidate reference” vector,
that is included only on the preliminary basis. Candidate reference vectors are then
checked during subsequent learning: if they contribute to correct classification they are
kept, but if their presence leads to errors they are removed.

Active selection of reference vectors may eliminate many training vectors from the
reference set. Further optimization of their positions should decrease the training error.
The reference vectorR in the neighborhood of a training vectorX should be updated
as follows:

R←R+η (2δ(C(X),C(R))−1)(X−R) (22)

Hereη is the learning rate, slowly decreasing to zero during training, and Kronecker
δ is 1 if the classC(X) = C(R) or 0 otherwise. Various rules for moving centersR are
used: moving only the nearest neighbor, moving allk neighbors by the same amount,
using distance-dependentη, decreasingη during training etc. (Laaksonen and Oja
1996). One can also optimize a subset of vectors, for example only those that are close
to the center of clusters.

Virtual Support Vectors (VSV) may be added to the reference set to improve classi-
fication rates. The simplest approach is to interpolate between existing training vectors
and to add VSV between vectors of different classes that are near to each other. In
cases when data clusters belonging to different classes are far from each other VSV
help to shift decision borders between classes, improving generalization. If the clusters
mix with each other or are very close VSV are not created at all because the vectors
from different classes will be closer than a minimum threshold value.

Reference vectorsR that are far from the query vectorX should obviously have
smaller contribution to the classification probability. Radial Basis Function (RBF) neu-
ral networks (Bishop 1995) using Gaussian or inverse multiquadratic transfer functions
are a particular example of the soft weighting minimal distance algorithms where the
number of prototypes included is not restricted, but the weighting function provides
an effective cutoff. The conical radial function is favorite among fuzzy logic practi-
tioners: zero outside the radiusr and 1−D(X,R)/r inside this radius. Classification
probability is calculated by the output node using the formula:

p(Ci|X;r) =
∑m∈Ci

G(X;Rm,r)
∑m G(X;Rm,r)

;

G(X;R,r) = max

(
0,1− D(X,R)

r

)
(23)

HereG(X;R,r) is the weight estimating contribution of the reference vectorR at
some distanceD(X,R). An almost constant weight value up to a distancer is provided
by a sigmoidal functionσ(D(X,R)− r), falling to zero for larger distances (slope of
the sigmoid may be used as an additional parameter here).
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One may also use variabler equal to the distance to thek-th neighbor and use the
weighting function for the vectors inside this radius. Ifr k is the distance to thek-th
neighbor andrk ≥ ri, i = 1..k−1 then a conical weighting function

G(D) = 1−D/αrk,α > 1 (24)

has valuesG(0) = 1 andG(rk) = 1− 1/α. For largeα the cone is very broad and
all vectors receive the same attention; forα approaching 1 the furthest neighbor has
weight approaching zero. Therefore an SBM model with optimizedα cannot be less
accurate than the model that uses similarity tok prototypes without weighting.

Wettscherecket al. (1997) propose the hyperbolic weighting scheme:

p(C|X ;M) =
∑R∈Ok(X) δ(C(X),C)1/(D(X,R)+ ε)

∑R∈Ok(X) 1/(D(X,R)+ ε)
(25)

whereOk(X) is the neighborhood ofX containingk reference vectorsR andε is a small
constant used to avoid dividing over zero.

2.6. Estimation of classification probability

Classification models require a function or a procedure to estimatep(Ci|X;M) proba-
bilities of assigning vectorX to the classCi. If the estimations do not sum to 1 they
should be renormalized. Some methods may predict only the most likely class, in effect
assigning probability 1 to this class and 0 to all others. In thek-NN method probabil-
ities p(Ci|X) = Ni/k, whereNi ≤ k is the number of neighbors belonging to the class
Ci.

There is no guarantee that probabilities obtained from classifiers will give the ac-
curacy of results above the base rate (majority rate). Classification models that are too
complex frequently overfit the training data, especially if optimization of model pa-
rameters is done on the training set only. A simple way to correct these probabilities is
to introduce an additional linear model. In theK-class problem the order of the classes
is chosen in such a way that the majority class has the highest label. Probabilities
p(Ci|X;M) for i = 1..K−1 are rescaled by parametersκ i:

pi(X) = κi p(Ci|X;M), (26)

pK(X) = 1−
K−1

∑
i=1

pi(X), κi ∈ [0,1]

For κ i = 1 nothing is changed and original probabilities are used; forκ i = 0 all
vectors are assigned to the majority class. Since this is a linear model it is easily
optimized in the least-mean square sense. For two classes an explicit formula for the
optimal p1(X), p2(X) may be written.
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2.7. Cost function definition

Knowing the formula for classification probabilities a cost functionE[T ;M] may be
defined. It should include an estimation of the empirical risk of misclassification
R (Ci,Cj), an estimation of the similarity (or dissimilarity) of the predicted classes
S(Ci,Cj), a kernel functionK(·), scaling the influence of the error on the total cost (for
a given training example), and an appropriate regularization term to avoid overfitting.
The empirical risk matrixR (Ci,Cj) measures the risk of assigning theCi class when
the true class isCj. In most cases risk and dissimilarity functions play the same role
and only one function is used, but conceptually they are quite different. A high risk
may be assigned to misclassification of two quite similar classes. In the simplest case
R (Ci,Cj) = δi j or R (Ci,Cj) = |i− j|.

The simplest cost functions measure the number of classification errors, reported
as the error (or accuracy) achieved on some dataset. The winning classC m(X), where
m = argmaxi p(Ci|X;M), is compared with the true classC(X) and the number of errors
counted:

E(T ;M) = ∑
X∈T

(1−δ(Cm(X),C(X))) (27)

If classes are ordered in some meaningful way errors may be quantified and instead
of the Kronecker delta sum of the differences(Cm(X)−C(X))2 or more generally of
similaritiesS(Cm(X),C(X)),

E(T ;M) = ∑
X∈T

S(Cm(X),C(X)) (28)

is minimized over all parameters and procedures involved in determination ofC(X).
ForS(Ci,Cj) = 1−δi j the cost function Eq. (27) is obtained, but a domain expert may
provide specific similarity values.

Minimization of functions counting the number of classification errors is difficult
because these functions are discontinuous. A “soft” evaluation of the cost

E(T ;M) = ∑
X∈T

K

∑
i=1

R (Ci,C(X))S (p(Ci|X;M), pi(X))) (29)

allows to use inexpensive gradient methods to optimize parameters and procedures
defining the modelM. The soft dissimilarity functionS(p(Ci|X;M), pi(X))) measures
the difference between the predicted and the assumed probabilityp i. Most often a
quadratic function of the difference(p(Ci|X;M)− δ(Ci,C(X)))2 is used. The error
function becomes then the standard mean square error (MSE) function. Entropy-based
and other cost functions are sometimes used as an alternative to MSE function (cf.
Haykin 1994). In general the minimum of the MSE does not correspond to the mini-
mum of the classification error. Only in the hard limit, when probabilities are zero or
one, these two minima are identical.
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A regularization term penalizing high complexity of the classification model may
be added to the cost function. Regularization is quite effective in neural networks (cf.
Bishop 1995), where it allows to enforce “smoothness” on the mappings performed by
a system based on a large number of homogenous parameters (weights). Regularization
lowers the number of effective parameters of the model and prevents overfitting of the
data improving generalization of the system (Ripley 1996). Optimization of parameters
by checking performance on the validation set, rather than directly on the training set,
is a form of regularization. Noise added in a controlled way to the data may regularize
the model (Bishop 1995). A bootstraping technique used in statistics (cf. Breiman
1998) is also an effective regularization technique.

Kernel function plays a different role than dissimilarity or risk functions. A ker-
nel functionK(D), for example a Gaussian functionK(D) = e−D2/2σ2

, measures the
influence of the reference vectors on the total error.D = D(X,R) measures here the
distance of the vectorX to the nearest reference vectorR or to a set of all reference
vectorsRre f . In local regression based on the minimal distance approaches (Atkenson
et al. 1997) the error function is simply

E(T ;M) = ∑
m

K(D(Xm,Rre f ))(F(Xm;M)− ym)2 (30)

whereym are the desired values forXm andF(Xm;M) are the values predicted by the
modelM. If K(D) has a sharp high peak aroundD = 0 the functionF(X;M) will fit the
values corresponding to the reference input vectors almost exactly but will admit larger
errors for other values. This may be regulated by changing the dispersion of theσ of the
Gaussian kernel function. This is not the same as the weighting functionG(D) which is
used to estimate the influence of distance on contribution to classification probability.
In classification problems kernel function will determine the size of the neighborhood
around the known cases in which accurate classification is required.

2.8. Optimization and additional parameters/procedures

Optimization method that should be used to minimize the cost functionE[T ;M] de-
pends on the type of model used. To improve generalization a validation setV may
be used, composed of vectors that are not in the training set and not in the test set. To
avoid overfitting of the model to the training data theE(V ;M) cost function should
be minimized instead of theE(T ;M). Reference vectors for the modelM are selected
using the training setT only, but features are selected and parameters are optimized to
minimizeE(V ;M). For example, the leave-one-out error is minimized when the sum
runs over all training examplesX ∈ T except for one vectorX p. The modelM does not
contain thisX p vector in the reference set whilep(Ci|X p) is computed. The averaged
error for all p = 1..n should be minimized – this is quite simple in thek-NN method,
where the only parameter optimized (k) has integer values.

For real-valued parameters multistart gradient methods seem to be the most effec-
tive in optimization, if formulas for gradients of the error function can be derived. Some
models may be efficiently optimized by organizing gradient computations in a neural
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network-like style. Real-valued parameters are provided by transformation of features
d(Xj), similarity measures of features∆(·) and vectorsD(·), positions of the reference
vectorsR and the weighting functions estimating contribution of the reference vector
R to the classification probabilityG(D) = G(D(X,R)).

In some applications the training vectors may be mislabeled. This effect may be
included by assigning probabilities of classespi(R), rather than class labels (equivalent
to binary probabilities), to the training vectors. Probabilites assigned to the reference
vectors allow for soft-weighting of the class labels. An interesting possibility is to
treat these probabilities as adaptive parameters. This should allow the classifier to
reach base rate errors in regions where a few outliers exist. A simple method to adapt
these probabilities is to start from the initial labels, i.e. class probabilityp(Ci|R) =
δ(Ci,C(R)) and modify it to account for the neighborhood, adding just one parameter
to preserve normalization:

p(Ci|R)← (1−γ)p(Ci|R)+γp(Ci|R;M) (31)

i.e. a priori probabilities are corrected by the data. Theγ parameter should now be op-
timized. More complex models with several parameters may of course be considered.
Optimization of class probabilities is a form of data regularization, leading to models
that are more resistant to noise in the data.

2.9. Ensemble of models

An adaptive system may include several modelsMl and an interpolation procedure to
select between different models or average results of a committee of models. Such
averaging with boosting procedures for selection of training vectors leads to creation
of stable and accurate classifiers (Breiman 1998). Simple averaging, or linear combi-
nation of several models is most frequently used:

P(Ci|X;M) =
N

∑
l=1

Wl p(Ci|X;Ml) (32)

Least square minimization (LSM) procedure is used to determineWl coefficients.
Creating ensembles one should use all information available. Since we know for which
training vectorsRm each model makes an error it seems reasonable to use this infor-
mation in making an ensemble. Coefficients of linear combination should depend on
the distance betweenX and those regions around reference vectorsR m

l of the feature
space where modelMl works poorly, therefore:

P(Ci|X;M) =
N

∑
l=1

∑
k

WlD(X,Rm
l )p(Ci|X;Ml) (33)

should be a good choice. Identical LMS optimization is used as in the previous case.
Probabilities are obtained after renormalization:

p(Ci|X ;M)← P(Ci|X ;M)/∑
j

P(Cj|X ;M) (34)
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Instead of a single model that tries to provide one distance function in the whole
input space several local distance functions may be defined around the main prototypes
obtained using some initial clusterization method. This corresponds to a local coordi-
nate systems that may have quite different optimal scaling factors and orientations.

Various procedures to combine results of different models may be defined, the sim-
plest based on selection of the submodel with the minimum distance from the vector
given for classification, and more sophisticated based on the estimation of confidence
of each submodel in a given region of the input space. Using more than one model
provides more adaptive parameters and should improve the results. New submodels
may also be introduced in an incremental fashion, adding local systems in the regions
of space where classification is less accurate.

3. Examples of SBM models

Many pattern recognition, machine learning and neural network models may be accom-
modated in the SBM framework. One way to use this framework is to start with the
simplest model and develop it in the most promising direction adding new optimization
parameters and procedures. For example, starting from the simplestk-nearest neigh-
bor method with Euclidean distance measure on standardized data one may consider
the following improvements: optimization of the number of neighbors, optimization of
the distance function, sophisticated distance functions (such as in Fig. 1), soft weight-
ing, selection of features, selection and optimization of reference vectors, using several
models and many other options.

Each step towards more complex model decreases the bias of the classifier, but
may increase its variance (Breiman 1998), therefore after each step the model should
be validated and only if the greater complexity is justified by higher accuracy more
complex models should be accepted, otherwise a different type of optimization should
be used.

A few examples of known and novel methods belonging to the SBM framework
are given below.

3.1. k-NN model

In the k-NN model p(Ci|X;M) is parameterized byp(Ci|X;k,D(·),{X}}), i.e. the
whole training dataset is used as the reference set,k nearest prototypes are included
with the same weight, and a typical distance function, such as the Euclidean or the
Manhattan distance, is used. Probabilities are calculated as the ratio of the number of
neighboring vectors belonging to the classCi to the number of all neighbors included,
p(Ci|X;M) = Ni/k, and the most probable class is selected as the winner.

The restriction tok neighbors is realized by a hard-sphere metric distance function
D(X,Xm) with radius such that exactlyk neighboring vectorsX m fall inside it. The
type of the distance functionD(·) andk are usually the only parameters optimized in
thek-NN model. Fork = 1 there is no error on the training set, but already fork=2 the
training vector near the class border may have the nearest vectors from two different
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classes. Therefore the error on the training set, equal to zero fork = 1, grows for
k > 1 but may decrease for larger values ofk. The leave-one-out test is recommended
to optimizek using the training set data only. This type of test is particularly easy to
perform in thek-NN method since there is no learning phase, unless the metric function
is parameterized. For two-class problems oddk values are recommended to avoid ties
that arise when the same number of neighbors from different classes is found. For the
K-class problemk = 1,K +1,2K +1, ... avoids the ties but is a severe restriction on the
choice ofk. Ties may be resolved either by: a) rejecting cases in which tie occur; b)
adding one or more extra neighboring vectors until the tie is broken; c) decreasing the
number of neighboring vectors; d) randomly breaking the tie; e) selecting class with
the largesta priori probability; f) leaving probabilities instead of yes-no decisions; g)
using Eq. (26) to correct computed probabilities.

Details of thek-NN procedure are rarely given in papers on applications and it is
not always clear how ties are broken. In our experience the last two options are the most
appropriate. Adding more vectors to break the tie seems to be reasonable, although in
real applications differences in classification accuracy are sometimes negligible since
ties do not occur if real-valued features are used.

The simplest error function used in optimization ofk and the selection of the type
of similarity functionD(·) is:

E(X;k,D) =
K

∑
p=1

(1−δ(C(X p),Cj(X p))

Cj(X p) ←max
j

p(Cj|X p;M) (35)

whereC(X p) is the true class of the vectorX p while Cj(X p) corresponds to the best
k-NN recommendation. This function should be minimized in respect to all adaptive
parameters of the modelM (here onlyk and the type ofD function). In problems where
a natural similarity of classes is defined or a risk function has been given cost functions
Eq. (29) and (28) should be used.

3.2. r-NN models

Instead of enforcing exactlyk neighbors the radiusr may be used as an adaptive
parameter. The number of classification errors, or the probability of classification
p(Ci|X;r) = Ni/∑l Nl , is then optimized using the leave-one-out method or a vali-
dation set. The hard sphere transfer functions should be used in the network realization
of this algorithm.r-NN may reject some vectorsX if no reference vectors fall into the
r radius ofX or if equal probability of classification for several classes is obtained, but
one could also consider a method with variabler (increased until a unique classification
is done) to avoid such problems.

Introduction of variable radiiri for each reference vector instead of one universal
radius in the input space improves the method further increasing the number of adaptive
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parameters significantly. Development along this line leads to the Restricted Coulomb
Energy (RCE) classifier introduced by Reilly, Cooper and Elbaum (1982) which may
be treated as the hard limit approximation of the Gaussian-based RBF network. If no
neighbors are found around the training vectorX new spheres (reference vectors) are
added with largest radius such that the sphere does not overlap with the spheres of other
classes. If the new training vector falls into the range of a sphere of a wrong class the
radius of this sphere is shrinked to leave the vector outside of the sphere. Positions of
the spheres are not optimized in the RCE algorithm – this would lead in the direction
of LVQ algorithms (Laaksonen and Oja 1996) – but voting methods for the committees
of classifiers were used with success (Wasserman 1993).

The number of radiusesri may be reduced by using only a few independent values
in selected input space areas. One could also optimize components of one radius (i.e.
not just a total distance but separate distances for individual input features), but this
would give the same result as optimization of the metric function described below.
To reduce the number of parameters variable radiuses should be attached only to the
centers of clusters. To assure smooth transition between different regions of the input
space interpolation of ther values from the nearest cluster centers is recommended.

Although r-NN model is quite simple it does not seems to be used and little is
known about it. Our preliminary test showed that on same datasets it gives better
results thank-NN. A combination of these two nearest neighbor methods could also be
considered using Eq. 32 or 33.

3.3. Soft weightingk-NN and r-NN methods

A natural generalization of ther-NN method is obtained by introducing theG(D)
weighting function instead of sharply cutting off the neighbors taken into account at
the specified radiusr. Gaussian classifier (cf. Wasserman 1993, Krishnaiah and Kanal
1982) also belongs to this category. In the simplest version of the RBF algorithm Gaus-
sian functions are used and only one parameter – dispersion – is optimized (Bishop
1995). Independent optimization of allN components of dispersion vector has the
same effect as optimization of the scaling factorss j in soft-weighted NN-r method.

Other methods of weighting discussed in the previous section may be tried with
k-NN or r-NN method. The effect of weighting is more pronounced for largerk values.
If k is taken as the number of all remaining training vectors andα is optimized in the
G(D) = 1−D/αrk function the results should be close to ther-NN method, but if both
k andα are optimized the results should be better.

3.4. RBF, FSM, LVQ and fuzzy systems

In RBF networks Euclidean distance functionsD(X,R j) = ||X−R j|| are assumed and
radial, for example GaussianG(D) = exp(−D2), weighting functions are used. Es-
sentially RBF is a minimal distance soft weighted method with no restrictions on the
number of neighbors – reference vectorsR j that are near influence probabilities of
classification more than those that are far. The SBM framework suggests that there is
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nothing special about this choice of distance function and the weighting function (cf.
the conical radial weighting function Eq. (23) and other possibilities of weighting).

Optimization of the positions of reference vectorsRm leads to the Learning Vector
Quantization type of methods (LVQ, cf. Kohonen 1995) in which the training set is
used to define the initial prototypes and the minimal distance to one of the prototypes is
used to assign the classes. From SBM perspective it is clear that LVQ may be combined
with various weighting schemes and the probability of classification may be calculated
using more than a single neighbor.

The Feature Space Mapping (FSM) neurofuzzy model is based on separable (rather
than radial) weighting functions (Duch and Diercksen 1995). FSM may use many
localized transfer functions, including Gaussian, conical, trapezoidal or rectangular
functions. These transfer functions may again be understood as the weighting functions
for prototypes localized in the neighborhood of a query vectorX. Thus FSM may be
regarded either as a specific realization of the SBM scheme or as an adaptive fuzzy
logic rule-based system. A whole class of the fuzzy if-then rule systems is equivalent
to the soft-weightedk-NN (Kuncheva and Bezdek 1997, 1999).

An important problem with localized description of the data by RBF and similar
methods concerns the representation of oblique probability distributions of the classes.
A solution creating oblique probability distributions inN-dimensional space using only
N parameters has been described quite recently (Duch and Jankowski 1999). Oblique
decision borders in SBM are obtained by rotation of the local coordinate system in
which distances are computed. It is sufficient to use a rotation matrix with scaling
factorsRii = si on the diagonal and rotation parametersRii+1 = βi as the only off-
diagonal element.

Relation of the SBM framework to other neural models has been discussed in de-
tails in (Duchet al. 2000a). Multi-layered perceptrons, although related more to dis-
crimination rather than clusterization methods, may also be regarded from SBM per-
spective if the input vectors are normalized – this may always be done in an extended
feature space, adding one additional feature. Weights in such networks play the role of
reference vectors and sigmoidal transfer functions play the role of weighting functions.
This is clear if the weighted activation is written in the form:

σ(W ·X) = σ
(

1
2
(||W||2 + ||X||2−||W−X||2)

)
= σ(d0−D(W,X)) (36)

whereD(W,X) is proportional to the square of Euclidean distance. Usingσ(d 0−
D(W,X)) activation functions with different distance functions leads to new type of
neural networks (D-MLP networks) with additional non-linear parameters in the dis-
tance functions.

3.5. Neuralk-NN generalizations

Neural realization of the 1-NN rule for binary patterns is afforded by the Hamming
network (Lippmann 1987, Floreen 1991). An alternative approach to build a network
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with hidden nodes realizing thehard sphere transfer functions, i.e.Θ(r− d(X,R)),
whereΘ is the Heaviside threshold function,r is the radius of the sphere andd(X,R)
is the distance between the vectorX and the reference (training) vectorR. The output
units for each classCi sum the incoming signals from all active hidden nodes belonging
to that class. The numberNi of units assigned to a classCi in the radiusr from the
new vectorX allows to compute the probability of classificationp(Ci|X) = Ni/∑l Nl .
From the geometrical point of view in the input space a hard sphere is assigned to
each reference vector, labeled by the name of its class, and the output unit counts how
many spheres of a given class reach the pointX. Neural realization ofk-NN method
findsr for which the sum of all network outputs∑l Nl = k. Formally this can be done
by introducing recurrent connections and stabilizing dynamics when the “superoutput”
node achieves fixed value but in software realizations it is much simpler to select the
node with maximum activity.

A network generalization of thek-NN method provides more adaptive parameters
and therefore should give better results. The network should use hidden nodes com-
puting distancesD(X−Rm), whereRm are reference (training) vectors.k nodes with
the smallest distances output their class labelhl(X;Rl) = Ci and the remaining nodes
outputhm(X;Rm) = 0. The classes are numbered fromCi = 1. . .K. The output layer
computes probabilities using the formula:

O(Ci|X;M) = ∑
l

Wil ·hl(X) (37)

p(Ci|X;M) =
O(Ci|X;M)

∑l O(Cl |X;M)

The weightsWil between output node computing probabilities for classCi are ini-
tialized toWil = S(Ci,Cl)/Cl , where the matrixS(·) estimates similarity among the
output classes and in the traditionalk-NN is replaced by a Kronecker delta. Thus each
vector that belongs to thek nearest ones or that falls into ther radius ofX and is of the
classCl contributes to the probability of theCi class a valueS(Ci,Cl). The structure of
the network is shown in Fig. 2. For the cost function that should be optimized one may
take:

E(T ;W,k) = ∑
X

∑
i

R (Ci,C(X))(p(Ci|X;M)−δ(Ci,C(X)))2 (38)

where the modelM includesk and output weights as parameter and theS(C i,Cj) is
the output-class similarity function (matrix). If we want to minimize the number of
classification errors output probabilities should be changed into binary 0, 1 values by
the winner-takes-all procedure.

The output weightsWil are treated as adaptive parameters. Introduction of soft
weightingG(D(·)) allows to use gradient optimization methods. For many datasets
this simple network should outperform many classification models. The results should
be at least as good as the results ofk-NN, which came out to be the best algorithm for



Similarity-based methods 23

X

X

X

X

1

2

3

4

input
hidden
layer output

R1

R2

R3

R4

R5

C1

C1

C2

C2

C3

p(C1|X;M)

p(C2|X;M)

p(C3|X;M)

W11

W35

Figure 2. Network generalization of thek-NN method. The hidden nodes compute
distances to reference vectors and returnk values of class labels associated with the
nodes, while the output nodes compute probabilities.

(image classification and a few other applications in the Statlog study (Michieet al.
1994).

A single neuron provides discriminating hyperplane that may be replaced by one
reference vector. Position of this reference vector should be adapted to the data. Using
different Minkovsky’s distance functions dramatically changes the shape of decision
borders. Using one prototypeR i per class (i.e. one hidden node) the class membership
is decided by the discriminant function:

z(X) = W1D(X,R1)−W2D(X,R2)−θ (39)

whereθ is a threshold. The 3 adaptive parameters,W1,W2,θ and the positions of two
prototype vectors provide quite flexible decision borders in the two class problem (Fig.
3 shows an example). If more reference vectors are required the output node computing
discriminant function sums over prototypes for each class:

z(X) = ∑
l∈C1

WlD(X,Rl)− ∑
l∈C2

WlD(X,Rl)−θ (40)
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Figure 3. Decision borders for various exponents of Minkovsky distance function in
the nearest neighbor method forα=0.1, 0.3, 0.7, 1, 2, 8. Weight of the first prototype
is 3 times larger than other weights.
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Scaling of the whole sum, instead of scaling the influences of individual reference
vectors, is a simple way to reduce the number of adaptive parameters used by the
system. One option worth investigation is to use a simple gradient optimization for
weights and thresholds, and search based techniques for non-linear scaling parameters.

4. Discussion and related work

An overview of the similarity-based framework discussing various procedures and pa-
rameterizations has been presented. The SBM framework is very rich and there are
deep connections with many well known classification models developed by pattern
recognition and neural network communities. Although this paper has focused on clas-
sification methods heteroassociation, pattern completion and approximation problems
may also be treated by similar methods. Numerous improvements of various aspects of
the SBM framework have been discussed, including: a new method to convert symbolic
features into numerical features, a method to find the missing data, novel functions
for evaluation of similarity, methods of reference vector selection, method of improv-
ing the base rate, novel weighting functions, feature selection, combination of several
models usinga priori knowledge, connection with neural networks and neural-like
realizations of SBM.

The major contribution of this paper is the change of focus from a single model to
the search in space of all possible models belonging to a common framework. Start-
ing from the simplest models new procedures and parameters are added at each stage,
creating more complex models and selecting those that give the highest improvement
of accuracy. In effect a best-first search (or a beam search) is performed in the space
of all possible models. The final model selected may involve a combination of pa-
rameterizations and procedures corresponding to known classification model or to a
new method. Although we have no space here to present experimental results it may
be worthwhile to mention that preliminary implementation of the ideas presented here
allowed us (Grudzinski and Duch, in preparation) to obtain the best results in classi-
fication of more than half of the 20 datasets used in the Statlog project (Michieet al.
1994) and we are quite confident that results that are statistically indistinguishable from
the best ones may be obtained for the remaining datasets using SBM methods.

The work presented here is related to many developments in computational intelli-
gence, trying to integrate numerous efforts in different branches of this field. A survey
of the nearest neighbor methods has been published (Dasarathy 1990) but many aspects
of SBM are not discussed there. Wettschereck and Dietterich (1997) have tested several
methods of variablek selection in different input regions (multi-model approach in our
terminology), using thek-NN method. Surprisingly, the results for real datasets were
sometimes worse than fork-NN with a singlek, except in cases where two datasets
were mixed together, each requiring quite differentk for good classification. Perhaps
they have approached the problem in a wrong way since a proper combination of local
models should always give a better result (or at least the same result) as a single best
model does.
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Lowe (1995) introduced Variable Kernel Classifier based on Variable-kernel Sim-
ilarity Metric (VSM). In fact his approach is a version of RBF method. It is based on
optimization of distance scaling factors for each feature, equivalent to optimization of
Gaussian dispersions. His formula for probability is:

p(Ci|X;M) =
∑k

m=1 G(X,Rm)pi(Rm)

∑k
m=1 G(X,Rm)

(41)

wherepi(Rm) is the probability that the reference vectorRm belongs to classCi and
G(·) is the weighting function; this may be taken as 0 or 1, according to known classes,
or estimated for a givenk using the leave-one-out procedure. Optimization is done
by assigningk neighbors to each reference vector. After gradient-based optimization
k-neighbors are selected again and optimization repeated if necessary. Lowe reports
that deleting reference vectors from regions where classification is unambiguous (if
all neighbors assign the reference vector proper class withp > 0.6) actually improved
generalization slightly. Tests on the noisy XOR problem with 4 inputs showed the
ability of VSM method to select relevant inputs and assign them larger weights.

Yanget al. (1998) introduced a constructive neural method calledDistAI and based
on inter-pattern distances. A single hidden layer of hard-sphere weighting functions is
constructed, each covering as many vectors of a single class as possible. This algorithm
is similar to the network realization of the Restricted Coulomb Energy algorithm (cf.
Wasserman 1993) but the neural units realize the difference between two concentric
spheres of different radiuses rather than a single sphere (formally two radiuses, called
“thresholds”, are defined for each neural unit). The algorithm also checks for a sin-
gle attribute that separates the largest number of vectors from a single class. Distance
matrix between all vectors is computed once and sorted in ascending order; each row
i corresponds to distances from the vectorX (i). Spherical functions realized by neu-
rons of theDistAI network are equivalent to the reference vectors selected from the
training set by checking each vector (row) and counting the number of training vectors
belonging to a single class (it may be different than the class of the selected vector), i.e.
checking in the row how many consecutive entries are from a single class. The vector
for which maximum has been found defines the center of the new function and the
minimal and the maximal radiuses are defined using the closest and the furthest vector
from this center. All patterns correctly covered by the new function are removed from
the training set and the next hidden neuron is defined. Since new functions may overlap
with the old ones each new neuron has weights that are on a factor of 2 smaller than the
previous one. The worst case complexity of this algorithm is of the orderO(N), where
N is the number of patterns. Although Yanget al. (1998) report very good results for
many datasets the decision borders of such classifier are far from natural.

From these papers and from the preliminary numerical experiments with SBM
methods a few conclusions may be drawn. Scaling of individual features is very im-
portant and can bring substantial gains in accuracy as well as reduce the number of
features. Selection of a fixed number of neighbors works usually better than optimiza-
tion of one radius in which the number of neighbors is counted. If the optimal number
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of neighbors is small weighting procedures do not contribute significantly to accuracy.
Much better results are probably achieved if local weighting functions are introduced,
similarly as in the RBF, where adaptation of individual dispersions is of great impor-
tance, or if theα-optimized soft weighting is performed, Eq. (24).

Hastie and Tibshirani (1996) write about adaptivek-NN classification from the lin-
ear discriminant point of view, advocating the use of several local metrics in different
areas of the input space, instead of just one. Friedman (1994) proposed an interest-
ing way of adapting the metric based on a tree-structure interactive partitioning of the
data. Laaksonen and Oja (1996) proposed to improve thek-NN reference vectors using
LVQ techniques. Atkenson, Moor and Schaal (1997) discuss locally weighted regres-
sion techniques, minimal distance methods with various metric and kernel functions
applied to approximation problems.

All these proposals and many more may be accommodated in the general frame-
work presented here. Identification of the best combination of procedures and adaptive
parameters should allow for improvement of results achieved by the nearest neighbor
as well as neural classifiers. Many possibilities to create fuzzyk-NN models remain to
be explored (cf. Bezdeket al. 1986). Performance of various methods described here
(as well as any other classification methods) depends on the nature of the data given for
classification and remains a subject of further empirical study. We have already devel-
oped and tested many variants of SBM methods described here and we shall deal with
the empirical evaluation of these models separately (Grudzinski and Duch, in prepara-
tion). Our main goal is to develop software that will automatically construct a series
of models of growing complexity and growing accuracy combining various procedures
described in this paper.
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DUCH W, GRUDZIŃSKI K. (1999) The weighted k-NN method with selection of fea-
tures and its neural realization. 4th Conference on Neural Networks and Their
Applications, Zakopane, pp. 191-196
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