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A new methodology of extraction, optimization and
application of crisp and fuzzy logical rules

Wiodzistaw Duch, Rafat Adamczak and Krzysztof Geaewski

Abstract— A new methodology of extraction, optimization and applica-
tion of setsof logical rulesisdescribed. Neural networks are used for initial
rule extraction, local or global minimization procedures for optimization,
and Gaussian uncertainties of measurements are assumed during applica-
tion of logical rules. Algorithms for extraction of logical rules from data
with real-valued features reguire determination of linguistic variables or
member ship functions. Context-dependent member ship functionsfor crisp
and fuzzy linguistic variables are introduced and methods of their deter-
mination described. Several neural and machine learning methods of log-
ical rule extraction generating initial rules are described, based on con-
strained multilayer perceptron, networks with localized transfer functions
or on separability criteriafor determination of linguistic variables. A trade-
off between accuracy/simplicity isexplored at the rule extraction stage and
between rejection/error level at the optimization stage. Gaussian uncer-
tainties of measurements are assumed during application of crisp logical
rules, leading to “ soft trapezoidal” membership functions and allowing to
optimize the linguistic variables using gradient procedures.

Numerous applications of this methodology to benchmark and real life
problemsarereported and very simple crisp logical rulesfor many datasets
provided.

Keywords— Neural networks, logical rule extraction, fuzzy systems, fea-
ture selection, ML P, backpropagation.

I. INTRODUCTION

DAPTIVE systems, such as the multi-layered perceptr
(MLP) and other neural networks, adjust their internal p

priori knowledge about the problem to be solved is frequenth/
given in a symbolic, rule-based form. Extraction of knowledge

a_
rameters performing vector mappings from the input to the out;
put space. Although they may achieve high accuracy of clas
fication, the knowledge acquired by such systems is represente
in a large number of numerical parameters and network arclgi(-)
tectures, in a way that is incomprehensible for humans. aTheg

gle ‘chunks’ of information, directly interpretable in natural lan-
guage, and should relate quantitative and qualitative concepts in
an integrated fashion” [2].

Many methods to find logical description of the data have
been designed in the past using statistical, pattern recognition
[3] and machine learning [4] approaches. Rule-based systems
should be preferred over other methods of classification only in
cases when the set of logical rules is not too complex and their
predictive accuracy is sufficiently high. Hundreds of logical
rules produced by some algorithms provide opaque description
of the data and therefore are not more comprehensible than any
black-box classification system. Although the class of problems
with inherent logical structure simple enough to be manageable
by humans may be rather limited, nevertheless it covers some
important applications, such as the decision support systems in
medicine, finances, commerce and other applications.

A good strategy in data mining and classification tasks is to
use the simplest description of the data that does not compro-
mise accuracy: extract crisp logical rules first, use fuzzy rules
if crisp rules are not sufficient, and only if the number of logi-

on

cal rules required for high accuracy of classification is too large
se other, more sophisticated tools. In many applications sim-
IJ_e crisp logical rules proved to be more accurate and were able
ogeneralize better than many machine and neural learning al-
rithms [5]. In other applications fuzzification of logical rules
ave more accurate results [6]. Crisp logical rules may be con-
verted to a specific form of fuzzy rules (Sect. VIII) and op-
mized using gradient procedures, providing higher accuracy

L . . Wwithout significant increase of the complexity or decrease of
from data, combining it with available symbolic knowledge and -
- : . comprehensibility of the rule-based system.
refining the resulting knowledge-based expert systems is a gréeat - ) )
challenge for computational intelligence. Reasoning with logj- A€ néural methods competitive to other methods in provid-
cal rules is more acceptable to human users than recommerid-Simple and accurate sets of logical rules? There are two is-
tions given by black box systems [1], because such reasoninG#es here: understanding what neural networks really do, and
comprehensible, provides explanations and may be validated43/nd neural networks to extract logical rules describing the
human inspection increasing confidence in the system, impSr'J-‘ta- Many neural rule extraction metho_ds havg been devised
tant relationships and features may be discovered in the datain the past, but there are very few comparisons with other meth-
Comprehensibility is often regarded in machine Iearnin@ds and explicit logical rules are almost never pybllshed. Sev-
(ML) as the most desired characteristic of inductive method@! neural methods have been compared experimentally [1] on
(i.e. methods that learn from examples). Michalski, one ¢fi¢ mushroomand the three monk problems benchmark datasets
the ML pioneers, formulated it in the following way: “The re-[7], butno comparison with machine learning methods has been
sults of computer induction should be symbolic descriptions 8fVe€n- There is a strong competition from decision trees [8],
given entities, semantically and structurally similar to those 4hich are fast, accurate and can easily be converted to sets of
human expert might produce observing the same entities. Cold@ical rules, from inductive methods of machine learning [4],
ponents of these descriptions should be comprehensible as é‘{'r‘f from systems based on fuzzy [9], [10] and rough sets [11],
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inputs. Good linguistic variables may be determined simultaneariables: some methods work only with binary variables, other
ously with logical rules, selection and aggregation of featuregth discretized inputs, and yet other with continuous variables
into smaller number of more useful features may be incorpthat are converted to linguistic variables automatically.
rated in the neural model, adaptation mechanisms for continu-In the simplest case the inputs are binary and the network
ously changing data are built in, and wide-margin classificatiagives logical outputs. After training the network performance is
provided by neural networks leads to more robust logical rulegquivalent to a set of logical rules that may be found by giving as
In this paper we do not introduce “a new neural method” fanput all possible combinations of features. Rdinary features
rule extraction, but rather present a complete methodology fthte number of conjunctive rules i$ 8since each feature may ei-
extraction, optimization and application of sets of logical rulesher be absent, present or its negation may be present in the rule
An overview of neural rule extraction methods is made in thantecedent). To limit the number of nodes in the search graph
next section, followed by some comments on types of logicahe may try to limit the number of literals in the antecedents of
rules used in inductive methods. The first step in the rule-basedracted rules. In one of the first neural rule extraction methods
data analysis requires selection of initial linguistic variables, &aito and Nakano [14] restricted the maximum number of posi-
described in section four. Several new neural rule extractioive and negative literals and the depth of the breadth-first search
methods are presented in the fifth section and a pedagogical precess, additionally restricting the search tree to those combi-
ample of the actual process of rule extraction, based on the welktions of literals that were present in the training set. Due to
known Iris flower data [7], is given in section six. Once initiathese restrictions their method could sometimes accept a rule
rules are extracted simplification and optimization of linguistithat was too general. This drawback has been removed in the
variables for real-valued attributes is done. In the seventh senethod developed by Gallant [15]. The difficulty comes from
tion the accuracy/rejection tradeoff for sets of rules is explorethe inputs that are not specified in the rule provided as a candi-
A new error function is defined allowing to create hierarchicalate by the search procedure. Gallant takes all possible values
sets of rules, starting from rules that are very reliable but rejefar these inputs and although his rules are always correct they
many cases (assigning them to the “unknown” class), to rulesay be too specific.
that classify all data but are less reliable. The Validity Interval Analysis (VIA) method developed by
Crisp logical rules assign a given input vector to a single claghirun [16] is a further extension of the global approach. A
with probability equal 1, even in cases when similar probabilityalidity interval, specifying the maximum activation range for
for two or more classes should be reported. In section eightach input, may be found using linear programming techniques.
method for calculation of probabilities for rule-based classifierphese intervals may be propagated backwards and forwards
is presented. Assuming Gaussian uncertainties of the measutgdugh the network. Arbitrary linear constraints may be ap-
features analytical formulas for classification probabilities afslied to input as well as output units, giving the method the abil-
derived. Such approach is equivalent to the use of fuzzy rulgg to check the validity of non-standard form of rules, such as
with “soft trapezoid” membership functions applied to crisp inthe M-of-N rules, i.e. logical expressions in which at lelsbf
put vectors. This enables optimization of linguistic variables fay literals are true. VIA can handle also continuous-valued input
very large sets of rules using efficient gradient procedures afeghtures, starting from the training values and replacing them
preserves the ease of interpretation of crisp logical rules. lllugith intervals that are increased to achieve good generalization
tration of the optimization and probability calculation steps isf rules. The method may be applied to any neural network with
done in section nine while in section ten many applications anonotonic transfer functions. Unfortunately it has a tendency to
well-known data and some real-world examples are presenigdract rules that are too specific and rather numerous.
and, whenever possible, compared with other approaches. EXThese methods are global, based on analysis of outputs of the
plicit form of rules are given, in most cases the simplest anghole network for various inputs. Local, or “decompositional”
most accurate reported in the literature so far for these datasg{gthods [1] analyze fragments of the network, usually single
Section eleven contains summary and conclusions. hidden nodes, to extract rules. Such networks are either based
on sigmoidal functions (step functions in the logical limit), or
on localized functions. Using step functions the output of each
neuron becomes logical (binary) and since sigmoidal transfer
A taxonomy of the neural rule extraction algorithms mafunctions are monotonic and activations are between 0 and 1 it
characterize different methods using five dimensions [13]: (&) enough to know the sign of the network weight to determine
the ‘expressive power’ of the extracted rules (types of rules etlie contribution to activation of a given unit. Search for rules
tracted); (b) the ‘quality’ of the extracted rules (accuracy, fihas now 2 possible combinations of input features (irrelevant
delity comparing to the underlying network, comprehensibilitpr relevant feature, with negation of literal determined by the
and consistency of the extracted rules); (c) the ‘translucenagyeight sign), while in the global approach monotonicity does
of the method, based on local-global use of the neural netwaikt, in general, hold. Rules corresponding to the whole network
(analysis of individual nodes versus analysis of the total neare combined from rules for each network node.
work function); (d) the algorithmic complexity of the method; Local methods for extraction of conjunctive rules were pro-
(e) specialized network training schemes. One should add gmesed by Lin Min Fu [17], [18], [19], [20] and Gallant [15]. As
more dimension to this scheme, (f) the treatment of linguistigith the global methods depth of search for good rules is re-

Il. AN OVERVIEW OF NEURAL RULE EXTRACTION
METHODS.
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stricted. The weights may be used to limit the search tree tgined from analysis of new nodes/connections. Another simple
providing the evaluation of contributions of inputs that are nahethod belonging to that group has been presented by Geczy
specified in rule antecedents. As shown by Sethi and Yoo [24ihd Usui [29]. Weights in the MLP network with one hidden
the number of search nodes is then reduce®@"/./n). In layer are mapped after training into-91 or —1 values, simpli-
the Subset algorithm of Towell and Shavlik [22] inputs with fying the rule search step. In our own MLP2LN approach [30]
largest weights are analyzed first, and if they are sufficient to atescribed below such a mapping is incorporated in the learning
tivate the hidden node of the network irrespectively of the valussheme.
on other inputs, a new rule is recorded. Combinations of the twoRule Extraction As Learning (REAL) is a rather general tech-
largest weights follow, until the maximum number of antecedenique introduced by Craven and Shavlik [31] for incremental
conditions is reached. A fuzzy version of this approach has begeneration of new rules (conjunctive bl-of-N). If a new ex-
proposed by Hayashi [23]. ample is not classified correctly by the existing set of rules a
All these methods still have a problem with exponentiallpew rule, based on this example, is added and the fidelity of
growing number of possible conjunctive prepositional ruleghe extended set of rules is checked against the neural network
Towell and Shavlik [22] proposed to use tileof-N rules, since responses on all examples used so far. The RULENEG algo-
they are implemented in a natural way by network nodes. rihm [1], [32] is based on a similar principle: one conjunctive
some cases such rules may be more compact and compretigle- per input pattern is generated and if a new training vector
sible than conjunctive rules. To avoid combinatorial explosiois not correctly classified by the existing set of ruRsa new
of the number of possible input combinations for each networkle is created as a conjunction of all those inputs literals that
node groups of connections with similar weights are formeéfiave influence on the class of the vector. This is determined by
Weights in the group are replaced by their averages. Groups thansecutive negation of each input value followed by checking
do not affect the output are eliminated and biases reoptimizésing the neural network) if the predicted class has changed.
for frozen weights. Such a simplified network has effectively In the BRAINNE algorithm [33] a network ahinputs anch
lower number of independent inputs, therefore it is easier to andtputs is changed to a network wf+ n inputs andh outputs
alyze. If symbolic knowledge is used to specify initial weightsand retrained. Original inputs that have weights which change
as itis done in the Knowledge-Based Artificial Neural Networkkttle after extension and retraining of the network correspond
(KBANN) of Towell and Shavlik [24], weights cluster beforeto the most important features. The method can handle contin-
and after training. The search process is further simplified if theus inputs and has been used in several benchmark and real-
prototype weight templates (corresponding to symbolic rulelje problems, producing rather complex sets of rules. Logi-
are used for comparison with the weight vectors [25] (weightsal rule extraction has also been attempted using self-organizing
are adjusted during training to make them more similar to teRT model [34] and fuzzy ARTMAP architecture [35]. In the
plates). The RuleNet method based on templates has also beshcase a certainty factors for each rule are provided. Simpler
used to find the bes#-of-N rules inO(n?) steps and the bestself-organizing architectures may also be used for rule extrac-
sets of nestet¥l-of-N rules inO(n?) steps [26], exploring large tion [36], although accuracy of the self-organized mapping for
spaces of candidate rules. The method handles only discreatiassification problems is rather poor.
valued features, therefore initial discretization is necessary forThe DEDEC algorithm [1], [37] extracts rules by finding a
continuous features. The network has only one hidden lay@inimal information sufficient to distinguish, from the neural
with a specific architecture to inject symbolic rules into the nehetwork point of view, between a given pattern and all other pat-
work and refine them iteratively. terns. To achieve this a new set of training patterns is generated.
Several authors noticed the need for simplification of neurkirst, inputs are ranked in order of their importance, estimated
networks to facilitate rule extraction process. Setiono and LRy inspection of the influence of the input weights on the net-
[27] use a regularization term in the cost function to iterativelwork outputs. Second, clusters of vectors are selected and used
prune small weights. After simplification the network is disinstead of original cases. Only those features ranked as impor-
cretized by clustering activation values of the hidden unit ofant are used to derive conjunctive rules, which are found by
tained during presentation of the training set. The method doggarching.
not guarantee that all rules will be found, but results for small Since our goal is to get the simplest logical description of
networks were encouraging. The method of Successive Regjue data, rather than description of the network mapping, we
larization [28] is based on a similar idea, with Laplace regulaare in favor of using specialized training schemes and architec-
ization (sum of absolute weight values) in the error functionures. Of course any rule extraction method may be used to
inducing a constant decay of weights. Only weights smallapproximate the neural network function on some training data.
than some threshold are included in the regularizing term (thifie network is used as an “oracle”, providing as many train-
is called “selective forgetting”). Hidden units are forced to being examples as one wishes. This approach has been used quite
come fully active or completely inactive. After training a skelesuccessfully by Craven and Shavlik in their TREPAN algorithm
tal network structure is left and the dominant rules extractef88], combining decision trees with neural networks. Decision
Keeping this skeletal network frozen small connections are rigees are induced by querying neural network for new examples,
vived by decreasing the regularization parameters. After traiadding tree nodes that offer the best fidelity to the classification
ing of the more complex network additional logical rules are olisy the network. New branches of the tree are created only af-
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ter a large number of queries has been answered. Thereforegimeple description of the data and to be able to provide more
method is more robust than direct decision tree approach, whiabcurate, but more complex description, in a controlled manner.
suffers from small number of cases in the deeper branches. Cldgural methods of rule extraction may provide initial rules, but
sifiers based on ensembles of different models, similarity-bastét should not be the end of the story.

classifiers, statistical methods or any other classifiers that pro-

duce incomprehensible models of the data may be approximated I1l. TYPES OF RULES

by rule-based systems in the same way. . In this section types of logical rules are discussed, stressing
~ Neural networks based on separable localized transfer fuRga importance of decision borders they are able to provide in
tion are equivalent to fuzzy logic systems [39]. Each node hasytidimensional feature spaces. Although non-standard form
a direct interpretation in terms of fuzzy rules and there is ngx rules, such ad-of-N rules M out of N antecedents should
need for a search process. Gaussian functions were used forbié‘true), fuzzy rules, decision trees [4] and more complex forms
serting and extracting knowledge into the radial basis set tYBEknowledge representation are sometimes used in this paper
of networks [40]. More general proposal for neurofuzzy sySye will consider only standard IF ... THEN prepositional rules.

tem based on separable functions was made by Duch [41], [43]nce these rules are the simplest and most comprehensible they
Discussion of rule extraction using localized transfer functiong,q,1d be tried first.

has been given by Andrews and Geva [43]. These authors dex very general form of prepositional rule is:
veloped a quite successful approach called RULEX [44], based
on constrained MLP networks with pairs of sigmoidal functions (i) A
combined to form “ridges”, or “local bumps”. Rules may in this IF X € K™ THEN ClasgX) =G (1)

case be extracted directly from analysis of weights and threshs. it X pelongs to the clusteK® then its class is

olds, without the search process, since disjoint regions. of _t&e:CIass{K“)), the same as for all vectors in this cluster. This
data correspond to one hidden unit. In effect the method is Sifisneral approach does not restrict the shapes of clusters used
llar to a localized network with rectangular transfer functiongy, |ogical rules, but unless the clusters are visualized in some
The method works for continuous as well as discrete inputs. 4y (a difficult task in high dimensional feature spaces) it does
Methods of combining neural and symbolic knowledge, reyot give more understanding of the data than any black box
fining probabilistic rule bases, scientific law discovery and dafassifier. Therefore some assumptions regarding the shapes of
mining are closely related to applications of neural networks fqsters should be made, with the goal of obtaining the smallest
extraction of logical rules. Symbolic rules may be convertegymper of comprehensible rules in mind.
into RAPTURE networks [45] and trained using @ modified For clusters with decision borders that have simple convex

backpropagation algorithms for optimization of certainty facshapes several conjunctive rules of the type:
tors. The network prunes small connections and grows adding

new nodes if classification accuracy becomes too low.

It may seem that neurofuzzy systems should have advantagegg (x1 € X1 AXp € X2 A Xy € Xn) THEN Class=C¢  (2)
in application to rule extraction, since crisp rules are just a spe-
cial case of fuzzy rules. Quite many neurofuzzy systems afgay be sufficient. IX; are sets of symbolic values, discrete nu-
known and some indeed work rather well [42], [46], [47], [48]merical values, or intervals for continuous features, crisp logic
[49]. However, there is a danger of overparametrization of SUgfjjes are obtained. They provide hyperrectangular decision bor-
systems, leading to difficulty of finding optimal solutions [10]ders in the feature subspaces corresponding to variables appear-
[50], even with the help of genetic algorithms or other globghg in rule conditions. This approximation may not be sufficient
optimization methods. Systems based on rough sets [11] [feomplex decision borders are required, but it may work quite
quire additional discretization procedures which may determiRg|| if the problem has inherent logical structure.
the quality of their performance. We haye inclugied afew resqltsA fruitful way of looking at logical rules is to treat them as
obtained by fuzzy and rough systems in section X presentigg approximation to the posterior probability of classification
applications. Simpler rule extraction systems based on neu&tﬂx;M)' where the modeV is composed of the set of rules.
networks may have advantages over Fh.e fuzzy, rou_gh Or NeUip rules givep(Ci|X;M) = 0,1 but if clusters belonging to
fuzzy systems, although a good empirical comparison of thejfierent classes overlap this is obviously wrong. A soft inter-

capabilities is certainly needed. Many rule extraction metho‘ﬂ?etation of thes operator requires “membership” functions and
have been tested on rather exotic datasets, therefore their relqg\épds to fuzzy rules, for example in the form:

advantages are hard to judge.

Most papers on the rule extraction are usually limited to the H®(x)
description of new algorithms, presenting only a partial solution P(CX;M) = T
to the problem of knowledge extraction from data. Control of 2iHY(X)
the tradeoff between comprehensibility and accuracy, optimizahere
tion of the linguistic variables and final rules, and estimation of
g1e r_ella.blllty. of rules are almost never discussed. In practical W (X) = |—| M'(k)(xi) (4)

pplications it may be quite useful to have rough, low accuracy, i

3)
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and p¥(X) is the value of the membership function defined
for clusterk. Suchcontext-dependent or cluster-dependent
member ship functionsare rarely used in classification systems |
based on fuzzy logics, although they are quite natural in the neu-

rofuzzy systems [42]. |

The flexibility of the fuzzy approach depends on the choice
of membership functions. Fuzzy logic classifiers frequently use a) b)’
a few membership functions per input feature [10]. Triangular .
membership functions provide oval decision borders, similar to
those provided by Gaussian functions (cf. Fig. 1). Therefore re-
sults should be similar to that of the radial basis function (RBF)
networks and indeed they are formally equivalent [39]. Triangu- | |
lar membership functions may be regarded as piece-wise linear ¢) ————————d)
approximation to Gaussian membership functions, while trape-
zoidal membership functions are similar approximations to tHég. 1. Shapes of decision borders for a) general clusters, b) fuzzy rules (using
soft trapezoid functions obtained from combinations of two sig- Product of membership function), c) rough rules (trapezoidal approxima-

. . ) tion) and d) crisp logical rules.
moidal transfer functions (cf. next section).

Thus decision borders provided by the fuzzy rules, although
of different shape than those of crisp rules, do not allow for V. CONTEXT-DEPENDENT LINGUISTIC VARIABLES.

more_erX|bIe pgrtltlonlng_of the m_p_ut space. The_|r_ _b|g gdvan- Logical rules require symbolic inputs, called linguistic vari-
tage is the ability to provide classification probabilities inste les. The input data has to be quantized first, i.e. features

of yes/no answers. From the accuracy and simplicity point Befining the problem should be identified and their subranges

view the r_;xb|||ty to deal with obllque_ (_jlstrlbut|on of data MaY sets of symbolic values, integer values, or continuous intervals)
be more important than softer decision borders. Rotation beled. For example a variable “size” has the value “small” if

decision borders requires new linguistic variables, formed the continuous variabbg, measuring size falls in some specified

taking linear combination, or by making non-linear transformq,—‘,mgexk € [a,b]. Using one input variable several binary (logi-

tions of input features. The meaning of such rules is sometim&;l) variables are created, for examgle- 8(size, small) equal
difficult to comprehend (cf. proverbial “mixing apples with or—tg 1 (true) only if variable “size” has the value “small".

anges”). Another form of incomprehensible rules is obtaine Linguistic variables used by us acentext dependent, i.e
from & union of halfspaces defined by hyperplanes, formmgtﬁey may be different in each rule (cf. [51]). For real-valued

convex, polyhedral shapes. attributes intervals defining linguistic variables used in logi-
The rough set theory [11] is also used to derive crisp logigal rules are needed. Determination of these intervals is done
prepositional rules. In this theory for two-class problems thgy analysis of histograms (only in simple cases), information-
lower approximation of the data is defined as a set of vectofsased criteria like those used for decision-trees [4], using Fea-
or a region of the feature space containing input vectors th@fe Space Mapping (FSM) constructive neural network [42],
belong to a single clasSy with probability p(Ck|X;M) = 1, ysing special “linguistic units” (L-units) in MLP (multilayer per-
while the upper approximation covers all instances which hayeptron) networks [51] or using an explicit separability criterion
a non-zero chance to belong to this class (i.e. probability j§2]. Since it is hard to overestimate the importance of good lin-
P(Ck|X; M) > 0). In practice the shape of the boundary betweejistic units these methods are described below in some details.
the upper and the lower approximations depends on the indis-p symbolic attributecolor may take valuegreen, red, blue
cernibility (or similarity) relation used. Linear approximationgng appear in a rule as logical condition, for exanepler=red.
to the boundary region leads to trapezoidal membership fungn alternative way is to use a predicate functamhor(x). De-
tions, i.e. the same shapes of decision borders as obtainedp@y]ding on the type of variabbethe predicate function may
fuzzy systems with such membership functions. The crisp forgyyve a different interpretation. For examplexifs the wave-
of logical rules is obtained when trapezoidal membership fun%ngth of light andx € [600 nm, 700 nm] then color(X) is red,
tions are changed into rectangular functions. Rectangles allpw logical conditioncolor(X)=red is true. One may also in-
to define logical linguistic variables for each feature by intervalgoquce predicates for each color defined by logical functions
or sets of nominal values. color-green(x), color-red(x), color-blue(x). Such logical predi-
Crisp, fuzzy and rough set decision borders are special casate functions are linguistic variables, mapping symbolic or real
of more general decision borders provided by neural networkslues ofx into binary 0, 1 offalsg, true.
based on localized separable transfer functions [42]. Althoughlf the inputx € X, whereX is the subset of real numbers, or a
individual fuzzy, rough and neurofuzzy systems differ in theitarge set of integers or symbolic values, linguistic variables are
approach to logical rule discovery, their ultimate capability desreated dividing the datd into distinct (for crisp logic) subsets
pends on the decision borders they may provide for classificd- Linguistic variables are introduced as:
tion. 5(x) =F, unlesx € Xj, thens(x) =T
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ForX C RsetsX; are usually intervals and linguistic variablesA. Sdlection using density networks
are binary functions mappinginto O or 1. A typical linguistic
variable associated with the attribute “tire pressure” will e
if x<1.7,normal if 1.7 <x< 2.2 andhighif x> 2.2. Arule
may then have conditions of the forigh(x), which is usually
written asx=high, meaning thax > 2.2.

Feature Space Mapping (FSM) is a constructive neural net-
work [42], [53], [54] that estimates the probability density
p(C|X,Y; M) of input X-outputY pairs in each clasS. Nodes
of this network use localized, separable transfer functions, pro-
viding good linguistic variables. Crisp decision regions are ob-
Introducing acolor-red(x) predicate that has values in theta_lined by us?ng rectangqlar transfer functions; if this is not suf_'fi-
[0,1] range, instead of the binary 0, 1 values, one may interpr%'?nt Gaussian, trapezoidal or other separable transfer functions
it as estimation of similarity of color that has to the typical are used. L . -
red color. Using such predicate functions as logical conditionsT.he network is initialized using a decision tree or a cluster-
is equivalent to some form of fuzzy logic, depending on the wa a“"r! me_thod based on de_ndrograms [53], and gdapted to the
logical functions are mapped on arithmetic functions [9]. Thu§coming input dgta by moving th.e tran.sfer functions genters,
soft predicate functions play the role of membership function ecreasing and increasing their dispersions, or by adding more

binary valued functions are used in crisp logic and real valu EaPSfﬁr functions (_newbne':wor; nodesl) i Secl:es(iat\ry. The mlla_l
functions in fuzzy logic (for multistep values multivalued Iogic.Ialza lon process IS robust and may already l€ad 1o reasonable

conditions are defined). F& C R crisp membership functions intervals for the initial linguistic variables. In some cases results

are rectangular while fuzzy membership functions have triaﬁfter initialization, before the start of learning, were better than

gular, trapezoid, Gaussian or other shapes that are useful fBF‘l results of other pIaSS|f|cat|on systems [53]. The FSM n_et-
evaluation of similarities. work may use an arbitrary separable transfer function, including

triangular, trapezoidal, Gaussian, or the bicentral combinations
In many applications of fuzzy sets a common set of Iinguistﬁf sigmoidal functions [55] with soft trapezoidal shapes. Two

variables is assumed for all rules. Such membership function!, ple b_icent_ral—type functions are constructed as the diffe_rence
are context-independent, identical for all regions of the input of two sigmoidsg(x) —o(x~ 8) or the product of pairs of sig-

space. Defining for example 3 triangular membership functiotﬂ%ogjr?gﬁ;gigﬂféﬁ(rln; (g)()ﬁ ) fﬁ&?gjgi;?;i%?m’;ﬂ;;gﬁ'
er attribute i i i), rules for combinations: ) B
P ibutets (xi), Hz2(%), Ks(), ru inat the two forms become identical:

IF (b 0x0) A b (2) -/ Moy (300)) o(x+b)(1—0(x—b))  o(x+b)—o(x—b)

= 5
are sought [9], withki = 1,2,3. Unfortunately the number o(b)(1—o(-b)) o(b) —o(-b) ©)

of combinations grows exponentially with the number of at-

tributes (here like ), and the method works only for 2 or  The proof is not difficult if one notes the following identities:
3 dimensions. Covering of a complex cluster may require a

large number of such membership functions. In both crisp and o(b)/o(—b) = eb: o(b) = 1—o(—b) (6)
fuzzy cases linguistic variables should tntext dependent,

i.e. optimized in each rule. Small tire pressure for bicycle is

different than for a car or a truck. For examplexif=broad If the gain of sigmoidal functions(x) is slowly increased

for 1 < x; <4, xg=average for 2 < x; < 3, andxp=small for during learning rectangular functions are smoothly recovered

1 <xp < 2,xp=largefor 3 < x» < 4 then two simple rules: from products];(o(x — bi) — o(x; + b})). After training nodes
IF(xy=broadAxo>=small) THEN C=great of the FSM network are analyzed, providing good intervals for
IF(x1=averageAx,=large) THEN C=great logical variables. To encourage broad intervals, increasing sta-
ELSE C=s0-s0 bility of rules and facilitating selection of features, the lower

a?nd the upper values defining linguistic variables are moved
away from the center of the function during iterative training

partitionx; into distinct or just partially overlapping subsets. | i .
the context ofxy=large linguistic variablex; —average, rather (the same effect may be achieved by adding penalty terms to the
' ost function). To obtain initial linguistic variables for rule ex-

thanbroad, should be used. Instead of using a fixed numb i tart with rect lar t fer functi hich
of linguistic variables one should rather use rule-dependent li action we start with rectanguiar transter tunctions which may

guistic variables, optimized for each rule.

would be more complex if written using linguistic variables th

e fuzzified by using soft trapezoidal functions.

The simplest way to select initial linguistic variables is to anl—g' Linguistic neural units

alyze histograms, displaying data for all classes for each featureLinguistic neural units (L-units) automatically analyze con-
Histograms should be smoothed, for example by assuming thiatious inputs and produce linguistic variables [51]. The basic
each data vector is really a Gaussian or a triangular fuzzy nuseheme of such unit is shown in Figure 2. An inguis con-

ber. Unfortunately frequently histograms for all features ovenected viaw;,Wo weights to two neurons, each with its own
lap. Therefore we have developed several methods for deterseparate biady andb]. All transfer functions are sigmoidal. At
nation of initial linguistic variables. the end of the training they should be very steep, although at the
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beginning they may be quite smooth, allowing for fuzzy approxsice versa. The output L-unit neurons have frequently both
imation of classification borders. The two hidden neurons of thveeightsS;, S, = 0 and are deleted, because open intervals re-
L-unit are connected to its output neuron using weights,. alized by other hidden L-unit nodes are sufficient.

Experiments showed that learning is faster if connections TABLE |
from the two hidden L-unit neurons to other hidden neurons are

. . XAMPLES OF POSSIBLE FUNCTIONS REALIZED B\L-UNITS,b> U,TYPE

added. All weights have values constrained at the end of the
training to Q+1. The network (Fig. 3) composed of L-units and
hidden units (called R-units, since they provide logical rules) is

1-TYPE4 AS IN FIG. 2

an MLP network with specific (constrained) architecture. Since Wi |[W, | § | & | Functiontype
L-units have only one input, one output and four constrained +1 | +1 | +1| -1 Type 1
weights as parameters, functions realized by these units belong 1|41 41| +1 Type 2
to one of the four types shown in the limit of large gain in Figure +1| 0 |+1| O Type 3
2. 1|0 ]-1|0 Type 4

The first of these functions (Type 1) is obtained as a differ-
ences of two sigmoids and represents a typical linguistic vari-

bl val b bl th d (T 2 d In some applications with a large number of featuaesag-
ables, equiva gnt tox; € [by, by], the second ( ype ) er‘Otesgregation of some types of features is possible and should lead
negation—sg while the other two (Type 3 and 4), with only one

non-zero weight, correspond 19 > b or x; < b. The borders to better linguistic variables. Groups of features that are of the
) ' = i = O ame type may be combined together by an additional layer of
bi andb] defining linguistic variables and the four constraine P Y 9 y y

iah q dapti ¢ K eurons between input and L-units. These aggregation units (A-
weights are treated as adaptive parameters of our network. units) are either trained without any regularization, or trained

with initial enforcement of zero connections followed by train-
ing without any regularization. The A-units should be designed
incorporating knowledge about the type of input features. We

1. b o(W x+b) have used this approach only in a few difficult cases, when hun-
W> 1 dreds of features are present.
X @ Sl The L-units take as input continuous vectod$(P) =
(... and give as output a vector of linguistic variables
V\é o(W, x+b) L® = L(x®) = (1P 1P, Since this mapping is not one-
to-one it may happen that two or more input vectors belonging
+1 b to different classes are mapped to the same vdct®r. This
leads to classification errors (“conflicts” in the rough set termi-
nology) that other network nodes are not able to remove. If the
network is not able to discover better features that prevent this
: , kind of errors it may be worthwhile to explicitly force the dis-
Type 1 b b Tyl;ez tinguishability of all input vectors to avoid such situation. One
solution is to minimize the number of identical linguistic vari-
] ables corresponding to vectors that belong to different classes:
Type 3 Type 4 E(B,B/) _ z 6(L(p)7L(p/)) (7)
Fig. 2 Cc_)nstruction of a linguistic unit converting continuous inputs to linguis- CP’;‘)(/?P’
tic variables.

whereCP = C(X(P)) is the class th&(P) vector belongs to and
The threshold of the output unit is kept fixed at one. InpuB,B’ are the intervals defining linguistic variables To en-
weightsWj, W,, and the weight$;, S, each taking values con- able gradient minimizatiod functions may be replaced by nar-
strained to 0+1, may take at most 81 values. Only a few comrow Gaussian distributions. The total error function should be
binations give different L-unit transfer functions (Table 1). Mossummed over all intervalB,B’. Such explicit conditions en-
combinations are identically zero — in this case the feature ddescing distinguishability may be desirable, but may also lead to
not contribute to the rule. One could also use a single neuroreation of too many linguistic variables handling noise in the
with rectangular or bicentral transfer function instead of the Ldata.
unit. The network structure would then look simpler but it would . o
not be a constrained MLP network, easy to implement usiffg Separability criterion
conventional neural network programs. Another approach to selection of linguistic variables is based
In practice training L-units separately from R-units leads ton a general separability criterion introduced by us recently
faster convergence. When the L-unit weights are trained (optb2]. The best “split value” for an open interval should sep-
mizing linguistic variables) R-unit weights are kept frozen andrate the maximum number of pairs of vectors from different
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classes. Among all split values which satisfy this condition th@aximal cut points. When the data is split into two parts at least
one which separates the smallest number of pairs of vectors bee best split value for each of the parts will certainly be found
longing to the same class is selected. The criterion is applicabie¢he next stage.
to both continuous and discrete features. Since one feature iSometimes all split values of a given feature have very low
treated at a time the minimization process is easier than eitReparability. This either means that the feature is not important
trying to minimize classification error or Eq. (7) in respect to abbr that it should be taken into account in conjunction with dis-
intervals at the same time. cretization of another feature. The separability of a single split
Thesplit value (or cut-off point) is defined differently for con- value can easily be generalized to the separability of a set of all
tinuous and discrete features. In the case of continuous featusgtit values for a given feature, which can be used for the feature
the split value is a real number, in other cases it is a subset gklection. If separability measures for all features are low con-
the set of alternative values of the feature. In all casedefbe text dependent linguistic variables are necessary. Search for the
side (LS and theright side (RS) of a split values of featuref  best separability of a pair or a combination of several features is
for given dataseb is defined as: performed quite efficiently using beam search techniques. For a
pair of features the search complexity is quadratic in the num-
ber of split values considered, enabling in practice exhaustive
search. Searching for all feature split values at the same time
takes into account mutual interaction of features, therefore it
D—-LS(s, f,D) may significantly improve results, but since the search complex-
(8) ity is high the width of the beam search should be selected to
make it practical.

- {xeD: f(x) <s} if fiscontinuous
LS(s1.D) = { {xeD:f(x)¢s} otherwise
RS(s f,D)

wheref (x) is the f's feature value for the data vectar
The separability of a split value sis defined as: V. RULE EXTRACTION ALGORITHMS

After initial definition of linguistic variables methods to find
SSV(s) =2 ;'LS(S’ f,D)NDg|-|RS(s, f,D)N (D — D¢)| logical rules are needed. Neural methods that we will use for
& that purpose focus on analysis of parameters (weights and bi-
ases) of trained networks. Since in many cases inductive bias
- ECmin(|LS(s, f,D)ND¢|,|RS(s, f,D)ND¢|) (9) of neural networks may not be the most appropriate for a given
ce data methods described below may either be used to extract log-
ical rules directly from the data or to find a set of logical rules

¥vher%C 'ﬁ.ﬂ;]ebs?t of claslses a‘ll% 'r‘:’. tue Sﬁt of data E)’.el.Ctorfsthat approximates the mapping generated by a neural network.
rom D which belong to class. The higher the separability of 1,050 a0 other methods of rule extraction are useful to gen-

a split val_ug thg better. Points beyond the borders Of. _feat Fate initial form of rules that should be further simplified and
values existing in the dataset have the SSV (separability s Btimized together with the linguistic variables

value) equal to 0, while separability of all points between the
borders is positive. This means that for every dataset containipg
vectors which belong to at least two different classes, for eacf
feature which has at least two different values, there exists a spliffo facilitate extraction of logical rules from an MLP net-
value of maximal separability. work one should transform it smoothly into a network perform-
When the feature being examined is continuous and there arg logical operations (Logical Network, LN). This transforma-
several different split values of maximal separability close tion, called here MLP2LN [56], may be realized in several ways.
each other, a reasonable heuristics is to select the split vafiieeletonization of a large MLP network is the method of choice
closest to the average of all of them. To avoid such situatiorfsour goal is to find logical rules for an already trained net-
split values which are natural for a given dataset are examineehrk. Otherwise starting from a single neuron and construct-
i.e. values that are between adjacent feature values. If th@rg the logical network using training data directly (called fur-
are two maxima with smaller split values in between, or if thther C-MLP2LN method) is faster and more accurate. Since
feature is discrete, then the selection of the best split value mayerpretation of the activation of the MLP network nodes is not
be arbitrary. easy [57] a smooth transition from MLP to a logical-type of net-
The separability criterion can be used in several differemtork performing similar functions is advocated. This transition
ways to discretize a continuous feature, if context-independestachieved during network training by:
linguistic variables are desired. For instance, the same algoritlangradually increasing the slofef sigmoidal functions (3x)
can be followed as for the construction of a decision tree, but theobtain crisp decision regions;
possible cut points should be checked only for the feature beibysimplifying the network structure by inducing the weight de-
discretized. The recursive process stops when the subsequaytthrough a penalty term;
splits do not significantly improve the separability or when &) enforcing the integer weight values 0 atid, interpreted as
sufficient number of cut points is obtained. The recursive pr@-= irrelevant input;+1 = positive and-1 = negative evidence.
cess is necessary, because usually features have just one orfituese objectives are achieved by adding two additional terms to

MLP2LN: changing MLP into logical network



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 9

the standard mean square error functgyiw): possibility because at the end of the training the slopes should

be infinitely steep, corresponding to infinite non-zero weights.

1 ) Such approach may be interesting if the final goal is a hybrid,

EW)= 5 ZZ (Yk<p) —Fy (x(p);w)) + (10) network-rule based system. o
3 Introduction of integer weights may also be justified from the
A A Bayesian perspective [58], [59]. The cost function specifies our
71 > Wi+ 72 > WEWj — 1)%(Wj + 1) prior knowledge about the probability distributi@{W|M) of
b the weights in our modé¥l. For classification tasks, when crisp

logical decisions are required, the prior probability of the weight

The first part is the standard mean square error measure,gfues should include not only small weights, but also large pos-

matching the network output vectoF¢X (P;W) with the de- itive and negative weights distributed around. For example:
sired output vectorg (P for all training data samplgs The sec-

ond term, scaled b1, is frequently used in the weight pruning

or in the Bayesian regularization method [58], [59] to improve P(W|M) = Z(a) te ®EWIM) (14)
generalization of the MLP networks. oW M g2
A naive interpretation why such regularization works is based I:l .

on observation that small weights and thresholds mean that only N

the !iljear part of the sigmoid aroun0) is used. Therefore the. i/vhere the parameters; play a similar role for probabili-
decision borders are rather smooth. On the other hand for logi ; E-as the parametehs for the cost function. Using alterna-

rules we neeq sharp deC|§|on borders and as S|mp|e'skeleta| HYE cost functions amounts to different priors for regularization,
work as possible. To achieve these objectives the first regul

ization term is used at the beginning of the training to force som r example using Laplace instead of the Gaussian prior. Initial
. 1€ beg 9 9 k?lowledge about the problem may also be inserted directly into
weights to become sufficiently small to removed them. The se

o . . ttie network structure, defining initial conditions modified fur-
ond regularization term, scaled By, is a sum over all weights

- X . ther in view of the incoming data. Since the final network struc-
and has minimum (zero) for weights approaching zere:-r 9

. : . ; . ture becomes quite simple insertion of partially correct rules to
The first term is switched off and the second increased in t € refined by the learning process is quite straightforward.

second stage of the training. This allows the network to increase
the remaining weights and together with increasing slopes of
sigmoids to provide sharp decision borders.

The 6-th order regularization term in the cost function, may
be replaced by one of the lower order terms: X1—>Q .

W W2 — 1] cubic

|V\/|j|+|\/\/i?_1| quadratic (11) X
+1 1 L S
> W k= W = 5= W+ 5[ -1

k=1

These extra terms lead to the additional change of weights {
the backpropagation procedure, for example for the 6-th ord 34'0
term:

MW (W2 — 1)(3W2 — . .
W = AV AW (A7 = ) (W = 1) (12) L-units  R-units

Although non-zero weights have values restricted-tbin-
creasing the slopgsis equivalent to using one, large non-zerdi9- 3- MLP network with linguistic and rule units. An additional aggregation
. . - . layer may be added between the input and L-units.
weight value+W. One could consider several different maxi-
mal values oW in the final network, for example by adding,

L . The training proceeds separately for each output class. Al-
after skeletonization of the network, the following penalty termy, gp b y p

ough the method works with general multilayer backpropaga-
tion networks we recommend the C-MLP2LN constructive pro-

Z (0(Wj +1) —o(Wj - 1)) (13)  cedure that frequently leads to satisfactory solutions in a much

b faster way. As with all neural procedures for some data the net-

This term will not restrict the weights t& 1 but will allow them  work training may slow down and require some experimenta-
to grow beyond these values. We have not explored yet thien. Initially several constructive networks should be trained
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without regularization to determine the expected training error Since each time only one neuron per class is trained the C-
and the average number of epochs needed for convergence. B&P2LN training is fast. Both standard MLP architecture with
low typical values of parameters that work well in most casdmguistic inputs or the L-R network may be used with the C-
are given. MLP2LN approach. Since the first neuron for a given class is
1. Create one hidden neuron (R-unit neuron). trained on all data for that class the rules it learns are most gen-
2. Train the neuron on data for the first class using backpropf@l, covering the largest number of instances. Therefore rules
gation procedure with regu|ariza’[ion_ Start with small= 10-5 obtained by this algorithm are ordered, starting with rules that
andA, = 0 and the unit slope(x/T),T = 1. have the largest coverage and ending with rules that handle only
3. If convergence is slow (for examp|e, for 10% of the max@a few cases. This order allows for a very easy check of the qual-
imum number of training epochs the decrease of the errority of a set of rules by looking at the errors on the training data.
lower than ¥n, wheren is the number of the training samples)An optimal balance between the number of rules and the gener-
try training two neurons simultaneously; in rare cases trainir@ization error is usually obtained when only the rules that cover
more than two neurons simultaneously may significantly spetfger number of cases are retained.
up the training. The final solution may be presented as a set of rules or as a
(a) Train as long as the error decreases; then increase network of nodes performing logical functions, with hidden neu-
10\, and the slope of sigmoidal functiofis— T + 1 and train rons realizing the rules, and the hidden-output neuron weights
further; repeat this step until sharp increase of the error (typic3gt to+1. However, some rules obtained from analysis of the

more than 5 times) is noticed whan is increased. network may involve spurious conditions and therefore the op-
(b) Decreasd slightly until the error is reduced to the previ-timization and simplification step is necessary (cf. Section VII).

ous value and train until convergence. Although constraints Eq. (10) do not change the MLP exactly
(c) Remove weights smaller théw| < 0.1. into a logical network they are sufficient to facilitate logical in-

(d) Takeh, = A1 andA; = 0 and train slowly increasing the terpretation of the final network functioh andA; parameters
slopes and» until the remaining weights reacht®.05or+1+  determine the simplicity/accuracy tradeoff of the generated net-
0.05. work and extracted rules. If a very simple network (and thus

(e) Set very large slopés~ 1000 and integer weights @1.  simple logical rules) is desired, giving only rough description of
4. Analyze the weights and the threshold(s) obtained by chedke data); should be as large as possible: although one may
ing the combinations of linguistic features that activate the firéstimate the relative size of the regularization term versus the
neuron(s). This analysis (see Section VI for an example) allowsean square error (MSE) a few experiments are sufficient to
to write the first group of logical rules that cover the most confind the largest value for which the MSE is still acceptable and
mon input-output relations. does not decrease quickly whenis decreased. Smaller values
5. Freeze the weights of existing neurons during further traief A1 should be used to obtain more accurate networks (larger
ing. This is equivalent to training only new neurons (usuallgets of rules). The final value @b near the end of the training
one per class at a time) on the data that has not been prop&ngy grow larger than the maximum valueXof.
handled so far. The only way to change MLP into a logical network is by in-

6. Add the next neuron and train it on the remaining data in thseasing the slope of sigmoidal functions to infinity, changing

same way as the first one. Connect it to the output neuron févem into the step-functions. Such a process is difficult since
the class it belongs to. a very steep sigmoid functions leads to the non-zero gradients
7. Repeat this procedure until all data are correctly classified,@tly in small regions of the feature space, and thus the num-
the number of rules obtained grows sharply, signifying overfiber of vectors contributing to the learning process goes to zero.
ting (for example one or more rules per one new vector classifiddnerefore when convergence becomes slow for large slopes it is

correctly are obtained). necessary to stop network training, extract logical rules and op-
8. Repeat the whole procedure for data belonging to othiémize the intervals of the linguistic variables. This optimization
classes. step, described in Section VI, is performed at the level of the

Thus the network expands after a neuron is added and tH&We-based classifier, not the MLP network. A direct method to
shrinks after connections with small weights are removed. #Ptain logical MLP network is described below.
set of rulesR 1V R5...v R is found for each class separatel
The output neuron for a given class is connected to !cohe hid()jlgh Search-based MLP
neurons created for that class — in simple cases only one neuMinimization and search methods share the same goal of op-
ron may be sufficient to learn all instances, becoming an outgurhizing some cost functions. Quantization of network param-
neuron rather than a hidden neuron (Fig. 3). Output neuroaters (weights and biases) allows to replace minimization by
performing summation of the incoming signals are linear arekarch. Increasing step by step the resolution of quantization
have either positive weight1 (adding more rules) or negativefrom coarse to fine allows to find the network parameters with
weight —1. The last case corresponds to those rules that cambitrary precision. Search-based optimization allows to use
cel some of the errors created by the previously found rules trsiep-like discontinuous transfer functions as well as any smooth
were too general. They may be regarded as exceptions to fhiactions. Replacing the gradient-based backpropagation train-
rules. ing methods by global search algorithm to minimize the value of
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the error function is rather expensive, therefore some form ot easier to use. FSM uses efficient clusterization procedures
heuristic search should be used, for example the best first seditzdised on dendrograms or decision trees) for initialization, fre-
or the beam search [60]. Even if the best first search algorithomently obtaining quite good results without any training (see
is used (corresponding to the steepest gradient descent) a g@id], [53], [54] papers, where details of the training algorithm
solution may be found gradually increasing the resolution of ttere described). Each network node covers a cluster of input
discrete network parameters [61]. In backpropagation traininvgctors. The training procedure changes the node parameters
this would roughly correspond to a period of learning with rath€such as their positions in the input space) until the error func-
large learning constants, with some annealing schedule for dien reaches a minimum. Nodes that cover only a few training

creasing the learning constant. vectors are removed and nodes that cover many training vectors
Given a network architecture the algorithm starts with alire optimized.
weightsWj; = 0 and biase®; = —0.5, so that all data is as- The node that has the largest output most often when all train-

signed to the default class (corresponding to zero network olrtg vectors are presented covers the largest number of input vec-
put). At the beginning of the search procedure the step \@alugtors. This node, assigned to a certain cl@ssthis is the class
for weights (and biases) is set. This value is added or subtractedjority of the vectors it covers belong to), corresponds to the
from weights and biase®\ij + A, 6; £A. This significantly re- most general logical rule. The intervéil, by | for the selected
duces the search space. The best first and the beam search stnatie is adjusted to cover &l| class vectors that activate it. The
gies are used to modify one parameter at a time. Since computaiueby (b) is set between the lowest (highest) value ofxhe
experiments showed that sometimes such search is not sufficieglonging to the training vectors of tl® class covered by this
computationally more demanding variants of the search metede and they value of the nearest vector from another class.
ods modifying two weights at a time may be used. To speddose features that cover the whole input data range are deleted
up the search they are performed in two stages. First, all thimce their contribution is always constant. For the remaining
single changes of parameters are tested and a number of fdetures further selection is done by checking the number of er-
most promising changes (i.e. changes decreasing the valug@® on vectors belonging to classes other than the class assigned
the cost function) is selected (the beam width). Second, all paicsa given node. This procedure is repeated for all network nodes
of parameter changes from the chosen set, or even all the s[da#].
sets of this set, are tested, and the best combination of changdsor radial membership functions, such as Gaussians, one
applied to the network. Since the first stage reduces the numbeuld also use the RBF networks for extraction of crisp rules,
of weights and biases that are good candidates for updating gihough we are not aware of any papers in which the transition
whole procedure is computationally efficient. from Gaussian-like functions to rectangular function limit (for
The search-based training procedure is an interesting akample by increasing exponemin exp(—x2") function) has
ternative to the gradient-based backpropagation training [6been studied.
Adding some constraints to the optimized cost function can pro-
duce networks easily convertible to crisp logical rules or fuzzy- Rule generation using separability criterion

logical rules with soft trapezoidal membership functions ob- ggy separability criterion defined in Eq. (9) has a natural ap-
tained by subtracting two sigmoidal functions (Eq. 5). If aljication in construction of decision trees. The simplest method
the weights are integers (which is the case whenl) and the of pyilding such a tree is to use the best first search method.
hidQen neuron transferfunction is sufficiently steep, then the repe separability of each possible cut point of each continuous
sulting network can easily be converted to a sédleéf-N rules.  feature, or of each subset of the set of values of each discrete
The rules are generated by simple analysis of network parafgayre, is evaluated. The best splits are selected and the space
eters. All the inpgt combinations are chgcked and if their SUMnd dataset as well) is divided into two parts by the first two
exceeds appropriate bias a logical rule is generated. To obtg{anches of the binary tree. The criterion is then applied recur-
small number of conjunctive logical rules the space of weiglyely to each of the resulting parts of the input space (with their
values is searched assuming that biases are always equal t:B}gesponding data subsets). The tree is finished when it classi-
sum of the incoming weights minusi.e.6; = 5 Wj| —0.5.  fies the data with maximal accuracy. 100% accuracy is possible
In such cases a single neuron is equivalent to just one logigglly if there are no contradictory examples in the dataset.
rule, since only one combination of inputs gives a sum greatertne accuracy of 100% usually means overfitting. To avoid it a
than the bias. For example, if the only non-zero weights f‘Hruning technique is used maximize gener alization capacity
neuron 1 ar§Vy; = +1, Wi = —1, the threshold is-1.5and the  of the resulting tree. 10-fold crossvalidation for the training set
rule is: IF X1 A =Xz THEN True. is performed. In each crossvalidation pass unseen samples are
used to find the best way to prune the tree. Leaves that lead to
overfitting cannot be determined because the final tree may be
Although constructive C-MLP2LN algorithm and searchguite different than the tree built for the training data available
based MLP method work very well, especially with the optiduring crossvalidation (i.e. 90% of the data in 10-fold crossval-
mization of final rules described in section VII, in complex casddation), since decision trees, as well as most other classifiers,
FSM network with rectangular functions (or soft rectangulaare unstable [62]. Therefore an optindafyree of pruningis de-
functions that are changed into rectangular during training) magrmined. Pruning with the degreemfmeans cutting off all the

C. Probability density networks
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pairs of leaves which reduce the number of errors of their par- Although there is no reason why such procedure should pro-
ent by not more than. In each pass of the crossvalidation theride good linguistic units for the Iris example by chance it is not
number of errors counted for the test part of the data is checksd. bad! The accuracy of classification using logical rules crit-
The optimal degree of pruning is the maximal degree (naturahlly depends on selection of linguistic variables. Using two
number) corresponding to the minimal total crossvalidation tegariables per feature, small and large, dividing the range of fea-
error (sum of all crossvalidation test errors). ture values in the middle, 13 vectors from Iris-setosa class get

Each step of the best first search grows the decision tree hjxed with the vectors from two other classes. Using 4 linguis-
splitting one of its leaves in two. So after each step we improvie variables per feature also decreases classification accuracy,
(or in the worst case preserve) the classification accuracy. nitxing 16 Iris-versicolor cases with Iris-virginica. Evidently di-
means that the best first search follows a single branch of thision into 3 classes is fortuitous. Analysis of the histograms
search tree: if at a given stage we choose the best split we willthe individual features for each class, shown in Fig. 4 and
never try any alternative split although it can finally give mucfable II, proves that the division into 3 equal parts is almost op-
better (i.e. smaller) tree. To diminish this drawback we use bedmmal, cutting the histograms into the regions where values of
search instead of best first search, capable of finding better features are most frequently found in a given class. For exam-
sults at a larger computational cost. ple, Iris-virginica class is more frequent for the valuxgibove

The decision tree is easily converted into a set of crisp logic4l93 and Iris-versicolor are more frequent below this value. Dis-
rules (each branch of the tree represents one rule). However, ¢hetization based on histograms (shown in Table II) was made
rules containing premises describing all the nodes from the rdat dividing the data range into 15 bins and smoothing these his-
of the tree to it's leaves can be more complex than necessdpgrams by counting not only the number of vectors falling in a
Especially in bigger trees it may turn out that the decisions mag@een bin, but also adding 0.4 to adjacent bins.
at the very beginning are not important for classification of data
vectors which end up in a leaf. They may be important for o 20
large data set, but not necessarily for smaller, localized sample
Therefore redundant rule antecedents should be removed. **
find out which premises are spurious they are deleted one by o,
and a check of the accuracy is made. If the accuracy is decreas

15

10

the premise should be kept. We will refer to this method o s 5

generating rules as SSV, i.e. using the same name as for |

separability criterion. % 5 6 7 8 % 3 4 5
V1. EXTRACTION OF RULES— PEDAGOGICAL 2 0

ILLUSTRATION 25

For pedagogical purposes we will illustrate the first steps o %

our methodology using the Fisher Iris dataset. The data has be;s 20

taken from the UCI machine learning repository [7]. The lIris,

data has 150 vectors evenly distributed in three classes: iri | 10

setosa, iris-versicolor and iris-virginica. Each vector has 4 fet

tures: sepal lengtky and widthxy, and petal lengtks and width % 2 4 6 8 % 1 2 3

X4 (all given in centimeters).

The simplest way to obtain linguistic variables, often used ifig. 4. Histograms of the fous — X, Iris features. Theg, x4 features (lower
design of fuzzy systems, is based on division of each feature part) allow for better discrimination than the first two features.
data range into a fixed number of parts and use of the triangular
(or similar) membership functions for each part [10]. The same This discretization is quite useful for the initialization of L-
approach may be used for crisp logic. Dividing the range of ea¢hits, although random initialization would, after some training,
feature into three equal parts, called snig)] medium(m) and also lead to similar intervals. It may also be used for initial-
large (1) the x; feature will be called small if it is ir4.3,5.5] ization of the FSM network nodes, although dendrogram-based
range, medium if5.5,6.7] and large in(6.7,7.9]. Thus instead methods work quite well. For the Iris case dendrogram initial-
of four continuous-valued inputs a network with 12 binary inization with Gaussian nodes gives 95% correct answers without
puts equal ta1 is constructed. For example, the medium valu@ny training of the network or optimization of rules. The net-
of a single feature is coded by three input urfitsl, +1,—1). work has 4 nodes corresponding to 4 fuzzy rules. FSM initial-
With this discretization of the input features three vectors d#ation with rectangular functions gives 80% of correct answers
the iris-versicolor class (coded gm,m,I,l), (mI,m|) and and requires short training to improve the linguistic variable in-
(m;s,1,m)) become identical with some iris-virginica vectordervals [53].
and cannot be classified correctly. Therefore after discretizationA single neuron per class was sufficient to train the C-
the maximum classification accuracy is 98.7%. IndistinguishMLP2LN network, therefore the final network structure (Fig. 5)
able vectors should be removed from the training sequence. has 12 input nodes and 3 output nodes. Hidden nodes are only
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TABLE Il

decision borders are placed too close to the data.
LINGUISTIC VARIABLES OBTAINED BY ANALYSIS OF HISTOGRAMS.

Using L-R network several solutions with optimized linguis-
tic variables are found, depending on the regularization parame-

| || s | m | [ | tersA. The simplest rules involve only one attribute, petal length
x1 || [4.3,5.5] (5.5,6.1] (6.1,7.9] X3
2 [[21- 00, 22, 705'3] 8 35'43621 ((43-923, 46- 431 R Eliz iris-setosa ifz < 2.5 (100%),
Xa [0: 1: 0: 6] (d. 6 1 7] (1'. 7"2.'5] R " iris-virginica if x3 > 4.8 (92%),
R <31): else iris-versicolor (94%)

The first rule is accurate in 100% of cases since the setosa
ass is easily separated from the two other classes. The overall
guracy is 95.3% (7 errors). Slightly more accurate rules (96%)
e obtained for smaller regularization parameters:

Iris-setosa ifxg < 2.56

Iris-virginica if x4 > 1.63

Iris-versicolor otherwise

needed when more than one neuron is necessary to cover all
rules for a given class. The network was trained for about 10
epochs and the final weights were within 0.05 from the desired
+1 or 0 values. The following weights and thresholds for the
three neurons were obtained (only the signs of the weights are

written):
Setosa (0,00 0,00 +,00 +0,0) 6=1 25 ‘ 1
Versicolor (0,00 0,00 0+0 0,+0) 6=2 +
Virginica (0,00 0,00 0,0+ 00,4 6=1 e
A+ +
2r HH + o+ 9
++ + +
&+ +  +H+ 4+ +
linguistic hidden ol .
input variables layer output 150 6 00O dir i
N [} O OO +
Xl o) 0 9 Setosa o oomoomo
(M) 50 cases, . -
@ all correct ir ©o00 @ |
X O
2 .
O < % Versicolor, os| “ 1
— @ @ 47 cases, obosele
X3 - <% all correct X Joooeee X
0 s s s s s
@ 0 1 2 3 4 5 6 7
— X setosa o versicolor + virginica
X Q Virginica
4 <)<@ Q <:> 53 cases Fig. 6. Iris dataset displayed ig andx, coordinates; decision regions (rules)
@ for the three classes are also shown. Note the three Iris-versicolor cases that

3 wrong are incorrectly classified using these two features only. The brittleness of

rules is illustrated by decision border that is placed too close to the setosa
class.

Fig. 5. Final structure of the network for the Iris problem.
Similar solutions are found with search-based MLPs. All
These weight vectors are so simple that there is no need fgése rules are more robust than those obtained with linguis-
rule extraction. The corresponding rules are: tic variables from histograms. SSV criterion has found another

Iris-setosa ifxs =sV x4 =S
Iris-versicolor ifxz =m A X4 =m
Iris-virginica if X3 =l V x4 =l

simple set of rules, offering 98% accuracy:

Iris-setosa ifxy < 0.8
Iris-virginica if x3 > 4.95A x4 > 1.65

Only two featuresxs andxa, are relevant since all weights for  Iris-versicolor otherwise

the remaining features become zero. The trained network struc-

ture is shown in Fig. 5. The first rule correctly classifies all What about more complex solutions? Usig= 0 and small
samples from the Iris-setosa class. Together with the other t¥@ue ofA2 the following weights and thresholds are found:
rules 147 vectors (98%) are correctly classified using only the

x3 andxg features. Setosa (+,000 0,0+ +,-0 +,--) 06=2
Linguistic variables were not optimized in the example above Versicolor - (0,0,0 0,00 0+,- 0+,-) 6=3
As a result the solution obtained is rather brittle (Fig. 6) — theVirginica  (0,0,0 00,0 --+ --+) 6=1
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To analyze these vectors note that in MLP2LN or in searchetivation equal to or larger than the thresh@le 2 should be
based MLPs with discretized network parameters rilgsm- considered.
plemented by trained neurons are written in the form of logical Logical rules are read directly from this tree. Changing the
conditions by considering contributions of inputs for each linerder in which the levels are considered equivalent rules are ob-
guistic variable. Such variabfds represented by avectdgand tained. A useful heuristic to find the simplest set of rules is to
its contribution to the activation is equal to the dot product of thetart with features that contribute the most to the activation (fea-
subset; of the weight vectoWs-Ws. To find all rules that are tures 4 and 3 in this case). As shown in Fig. &4f= sthe acti-
compatible with a given set of weights and thresholds one hasvationA is already 3 and if it is followed bys = sthe activation
perform a search process, considering combinations of all inpdts= 5 and the two other features will not reduce the activation
to the activation of the network node. Since MLP2LN methobelow 3 (since each may subtract at most 1). Therefore the acti-
guarantees that only relevant inputs have non-zero weights traion is greater than the threshdd> 6 = 2 forxg =sAxy =s.
search space had 2lements, whera is the number of used In the same way other conditions consistent with the weights are
features. found, giving a rule with four antecedents for class Iris-setosa,

For the Iris-setosa vectors the weights for the first feature avee rule for Iris-versicolor and one for Iris-virginica:
(+,0,0), therefore contribution fromx; = sis A = +1. From

bothx; = mandx; =1, equivalent tax; = —s, contribution is
A = —1. Analysis of other features and weights is summarized IF (X3=SAXxg=9)V
in the Table 11l and the structure of the network for this case is (X1 =sAXs=IAX4=5)V
shown in Fig.7. (x1=-SAX2=lAxg=IAxs=9)V (15)
TABLE Ill (X1 =8SAX2=IAXg=SAXs=—9)
CONTRIBUTIONS OF FEATURES FOR THE FIRST CLASHRIS-SETOSA). THEN iris-setosa
[ No. [value | A [value| A [value|A] IF (x3 = mMAX4 =m) THEN iris-versicolor
X1 S +1 -S -1
Xo | +1 | -1
X3 S +2 m -2 | 0
X4 S +3 —S -1
L R
input units units output

Fig. 8. Tree-based search for rules after network has been trained.

These rules allow for correct classification of 147 vectors,
achieving the highest theoretical accuracy (98%) for the his-
togram discretization. Comparing them to simpler rules of the
same accuracy presented above it is clear that they are too com-
plex. Large thresholds may simplify the rule extraction process,
leading to simpler search trees. One could implement addi-
tional conditions in the MLP2LN algorithm to encourage such
large thresholds, but we have not tested this option yet, although
we use it in SSV and search-based MLPs. The validity of all

Using Table 1l one can easily create a search tree (Fig. B)les presented here has been confirmed with a Prolog program,
with weights equal to the total contribution of each feature tehich is also used to search for rules in complex cases.
the final activation. At the first level there are 2 branches, at theDensity networks provide logical rules without the need to
second level also 2, fogs it is 3 and forxy it is 2, giving a total check the combination of linguistic features. An FSM node
of 24 leaves. At the first level contribution ®f is +1 forx; =s implementing rectangular transfer function has the intervals de-
or —1 for x; = —=s. For Iris-setosa class only the leaves witlined for each relevant feature and is equivalent to a conjunctive

Fig. 7. Structure of the network trained with= 0 on the Iris problem.
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rule. Using Gaussian or other soft transfer functions has directSince rules discriminate between instances of one class and
interpretation in form of fuzzy rules, and the transition procesal other classes one can define a cost function for each rule
between fuzzy and crisp rules may be studied by increasing theparately:
slopes of sigmoidal functions combined to create bicentral trans-
fer function Eqg. (5). o ' Er(M) =y(F+—+F_4) - (Fir +F__) (19)

It is impossible to estimate statistical accuracy of the logical
rules in cross-validation tests since for each training data se@@d minimize it over parameteid used in the ruleR only
different set of rules is obtained. Comparison of accuracy drr means here one of the classes, andneans all other
datasets with separate training and test parts is done in Secgpses). The combinatién, . /(F, +F, ) € (0,1] is some-

X. times called the sensitivity of a rule [75], whife__/(F__ +
F_.) is called the specificity of a rule. Some rule induction
VIlI. OPTIMIZATION AND RELIABILITY OF RULES methods optimize such combinationsofy values.

Rules obtained from analysis of neural networks or decision Estimation of the reliability of rules is very important in
trees may involve spurious conditions, more specific rules m&jany applications. Tests of classification accuracy should be
be contained in genera| rules or |ogica| expressions may be Sip@.rformed USing stratified 10-fold Crossvalidation, each time in-
plified if written in another form. Therefore an important par€luding rule optimization on the training set. Changing the value
of rule optimization involves simplification and symbolic oper©f y will produce a series of models with higher and higher clas-
ations on rules. We use a Prolog program for such simplificélfication accuracy at the expense of growing rejection rate. A
tions. In addition optimal linguistic variables for continuousset of rules may classify some cases 100% correctly for all data
valued features may be found for the sets of rules extractdtitionings; if some instances are not covered by this set of
These optimized linguistic variables may be used to extract bégles another set of rules of lower accuracy is used (the accu-
ter rules in an iterative process, starting from initial values &fcy of rules is estimated on the training set only). High accu-
linguistic variables, extracting logical rules, optimizing linguisfacy rules should give more confidence that they are reliable.
tic variables, and repeating the whole process with new linguis-Most rule extraction procedures give only one set of rules,
tic variables until convergence is achieved. Usually two or thrésigning to each rule a confidence factor, for exancple:
iterations are sufficient to stabilize the sets of rules. pm(Ci,Ci)/ ¥ pm(Ci,Cj). This is rather misleading. A rule

Optimal linguistic variables (intervals) and other adaptive p& (U that does not make any errors on the training set covers
rameters may be found by maximization of a predictive powdypical instances and its reliability is close to 100%. If a less ac-
of a rule-based (or any other) classifier. EefC;,Cj|M) be the curate ruleR (2) is given, for example classifying correctly 90%
confusion matrix, i.e. the number of instances in which clasx instances, the reliability of classification for instances covered
C; is predicted when the true class was given some parame- by the first rule is still close to 100% and the reliability of classi-
tersM. Then forn samplespw (Gi,Cj) = F (Gi,Cj|M)/n s the fication in the border regioR (?'\R () (cases covered dy (2
probability of (mis)classification. The best parametetsare but not byR (1) is much less than 90%. Including just these
selected by maximizing the number (or probability) of corrediorder cases gives much lower confidence factors and since the

predictions (called also the “predictive power” of rules): number of such cases is relatively small the estimate itself has
low reliability. A possibility sometimes worth considering is
max(Tr F (Ci,Cj|M)] (16) to use a similarity-based classifier (such as the k-NN method
M

S or RBF network) to improve accuracy in the border region. This
over all parameterl, or minimizing the number of wrong pre- may pe useful if the optimal classification borders have complex
dictions (possibly with some risk matr(C;, Cj)): shape that logical rules are not able to approximate.

Logical rules, similarly as any other classification systems,
(17) may becomérittle if the decision borders are placed too close
to the data vectors instead of being placed between the clusters
(cf. Fig. 6). The brittleness problem is solved either at the opti-
Weighted combination of these two terms: mization stage by selecting the middle values of the intervals for
which best performance is obtained or, in a more general way,
E(M) = yz F (G,Cj|M) —Tr F (Ci,Cj|M) (18) by adding noise to the data. Using the first method one deter-
iZ) mines the largest cuboid (in the parameter space) in which the
is bounded by—n and should be minimized over parameter§umber of errors is constant, starting from the values of the opti-
M without constraints. For discontinuous cost functisfM) Mized parameters. The center of this cuboid is taken as the final
this minimization may be performed using simulated annealirfgptimation of the adaptive parameters. A better method to over-
or multisimplex global minimization methods. yfis large the COme the brittieness problem is presented in the next section.
number of errors after minimization may become zero but some
instances may be rejected (i.e. rules will not cover the whole in-
put space). Thus optimization of the cost functie{M) allows Neural systems have good generalization properties because
to explore theaccur acy-rejection rate tr adeoff. they are wide margin classifiers. Their decision borders are ob-

min l;R(q,cj)F(Q,CJIM)
iZ]

VIIl. PROBABILITIES FROM CRISP RULES



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 16

tained from the mean square error optimization of smooth func- Xx>a) — /+°° G(V:X.S.)dv — 1 1_erf( 22X
tion that extends over larger neighborhood contributing to the p( ) a (i )y 2 5V/2
error. This allows for three important improvements: 1) the use 1 b—x a—x

of inexpensive gradient method instead of global minimizationP(x € (&,0)) = 3 [erf <S<—\/§> —erf (ﬁﬂ (23)

2) more robust rules with wider classification margins; 3) esti-
mation of class probability, instead of 0-1 decisions. Notice that this interpretation does not differentiate between in-
Input values result usually from observations which are nefualities< and<. To obtain reasonable probabilities rules with
quite accurate, therefore instead of the attribute vala€&aus- borders such that may be replaced by without loss of accu-
sian distributiorGx = G(y; X, ) centered aroundwith disper- racy are required, i.e. borders should be placed between discrete
sion s, should be given. This distribution may be treated as\alues.
membership function of a fuzzy numb@k. To compute prob-  The probability that a vectof belongsto arul®=ryA... A
abilities p(Ci|X) a Monte Carlo procedure may be performed,y may be defined as the product of the probabilitieXpE r;
sampling vectors from Gaussian distributions defined for all &r i = 1,...N. Such definition assumes that all the attributes
tributes. Analytical evaluation is based on the cumulative distiivhich occur in ruleR are mutually independent, which is usu-
bution function: ally not the case. However, if a pair of strongly dependent at-
tributes is used in linguistic variables that appear in a single rule

a one of these variables is dropped and the other re-optimized at
p(a—x) = /_0o G(y;x,s¢)dy = (20)  the stage of rule simplification. Therefore the product should be
1 a—x very close to real probability. Obviously the rule may not con-
> [1+ erf (ﬁ) ~ o(B(a—x)) tain more than one premise per attribute, but it is easy to convert

the rules appropriately if they do not satisfy this condition.

where erf is the error function arfil= 2.4/ /2s, makes the erf Another problem occurs when probability ¥fbelonging to
function similar to the standard unipolar sigmoidal function witf ¢1ass described by more than one rule is estimated. Rules usu-
the accuracy better than 2%. A ruRa(x) with single crisp con- ally overlap because they use only a subset of all attributes and

dition x > ais fulfilled by a Gaussian numb& with probabil- their conditions do not exclude each other. Summing and nor-
ity: - malizing probabilities obtained for different classes may give

results quite different from real Monte Carlo probabilities. To

o avoid this problem probabilities are calculated as:

Gx)=T)= G(y;x, s )dy~ o(B(x—a 21
PRa(G)=T)= |  Glyxsjdy~o(B(x-a) (21) o= 3 CUTXENR e
Taking instead of the erf function a logistic function corre- Re2Rc
sponds to an assumption about the error distributiox fobm whereRc is the set of the classification rules for clags2Rc
Gaussian tay(x)(1—a(x)), approximating Gaussian distribu-js ye et of all subsets of rules affe| is the number of ele-
tion with s> = 1.7 within 3.5%. If the. rgle myolves closed in- o ntsinR The probabilityp(X € (R) is calculated as a prod-
terval[a,b],a < t_)the _prqbat_nnty that it is fulfllled by a_sample uct of probabilities for single rule conditions according to Eq.
from the Gaussian distribution representing the data is: (23) (X € MR may be treated as a single conjunctive rule). This

formula takes care of overlapping rule regions, for example for

P(Rab(Gx) =T) ~ o(B(x—a)) —o(B(x—=b))  (22) two rulesRy(X),Rx(X) for classC the probabilityp(C[X; M) is
Thus the probability that a given condition is fulfilled is proporp(X € Ry) + p(X € Ry) — p(X € RiNRy).
tional to the value of soft trapezoid function realized by L-unit. Instead of the number of misclassifications the error function
Crisp logical rules with assumption that data has been measufeay include a sum over all probabilities:
with finite precision lead to soft L-functions that allow to com-
pute classification probabilities that are no longer binary. In this 1
way we may either fuzzify the crisp logical rules or obtain fuzzy ~ E(M,sy) = > Z Z (p(Gi|X;M) = 8(C(X),GCi))? (25)
rules directly from neural networks. Crisp logical rules with the !

assumption of input uncertainties are equivalent to fuzzy rulgg, e e includes intervals defining linguistic variables, are
with specific membership functions. The ease of mterpret@—mssialn uncertainties of inputs ap(Ci|X; M) is calculated

tion favors crisp rules, while the accuracy and the possibility %sing Eq. (24). The confusion matrix computed using prob-

application of gradient-based techniques to optimization favoert%ilities instead of the error counts allows for optimization of
fuzzy rules: we have the best of both worlds.

It is easy to calculate probabilities for single rule conditionEq' (18) using gradient—based methods. This minimization may
of the formx < & X > a or X € (a, b): Be performed directly or may be presented as a neural network
’ e problem with a special network architecture.
Uncertaintiess, of the values of features are additional adap-
/a Glyix sy = 1 1+ erf a-—x tive parameters that may be optimized. We have used so far a
i, y= 2 V2 very simple optimization with aby taken as a percentage of the

—00

px<a) =
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range of feature to perform one dimensional minimization of TheR (2 set of rules classifies correctly 147 vectors, achiev-

the error function independently of other steps. ing the overall 98.0% accuracy. However, the first two rules
An alternative possibility that we have considetetut not have 100% reliability while all errors are due to the third rule,

implemented yet, is to use the renormalized network outputs¢overing 53 cases. Further decrease of constraint hyperparam-

compute probabilities: etersA allows to replace one of these rules by four rules, with
a total of three attributes and 11 antecedents, necessary to clas-
P(C[X) = 0k(X) (26) sify c'otrectly a single additiona] vector, a cllear indicatiqn that
¥i0i(X) overfitting occurs. One cannot find more reliable rules this way.
with output neurons for class summing the contributions of _ 100% reliability of all rules is achieved after optimization of
rule nodes R @ rules with increasing > 0 and minimizing Eq. (18). The

smallest value of for which all rules do not make any errors is

found. For Iris this set of rules leaves 11 vectors, 8 virginica and
ok(X)=o0 (z Ri,k(x)> (27) 3 versicolor, as unclassified:
1
R (13): setosa if x3 < 2.9) (100%)
Each of these rule nodes computes normalized products ofmiz3>; versicolor if k3 € [2.9,4.9] AxXq < 1.7) (100%)

unit outputs connected to it. Although results will not be equiv, (3

R 9: virginica if (x3 > 5.3 Vx4 > 1.9 100%
alent to Monte Carlo simulation®(Ci|X) values behave like gl'h g ¢ (. ° t_d R (;4 _I ) be classifi é H?NZ(;)
probabilities and may be useful. € vectors rejecte rules may be classie

This approach to soft optimization may be used with any S%:e& but the reliability of classification for the vectors in the

of crisp logical rules to overcome the brittleness problem and (2)\ R border region |s'ra.th'er low: witip :.8/11 they
obtain robust wide margin rule-based classifiers. Wide margi sOUId l:_)e assigned to_ the virginica class and with 3/11. _to

are desirable to optimize the placement of decision borders fr T ve_rsmolor class. Itis p_ossmle togenerate more specific rulgs,
generalization point of view. If a single paramesescaling all including more features, just for the border region, or to use in

s is used it may be hard to avoid an increase of the numbertgfs region similarity-based classification system, such as k-NN,

classification errors despite the fact that the overall probabili%?Jt for this small dataset we do not expectany real improvement

of correct classification will increase. To avoid this problem V\?ocgl;;zget;u; iFr)irsoﬁg\?vL!Ps/ g:rigibnul“%rclzr?; leave's sizes for the
few iterative steps are used: after minimizat®is decreased y .

and minimization repeated untl becomes sufficiently small Th? Iris exa”.‘p'? IS too simple to see the full gdvaqtage of
and probabilities almost binary. In the limit minimization Ofapplylng the optimization and probabilistic evaluation, since the

MSE becomes equivalent to minimization of the classificatio umber of parameters to optimize is small and optimal accuracy

error, but the brittleness problem is solved because the interv §/°) is achieved with crisp rules. For cases near the decision

that are optimally placed for larger input uncertainties do n order between Iris virginica and Iris versicolor a more realis-
change in subsequent minimizations tic probabilitiesp(C|X; M) are calculated using formula (23).

The natural uncertainties here ar.1, equal to the accuracy of
IX. OPTIMIZATION AND PROBABILITIES FOR |RIS DATA. measurements. Six vectors near that border have probabilities

. around 0.5, up to 0.75, the remaining vectors have higher proba-
In the MLP2LN methoch, andA; constraint parameters al'bilities. Calculation of probabilities was essential in our real-life

Iov_v to gengrate dlf_ferenfc sets Qf T“'e_s = th_e L'R _netwo_rk alrépplication of rule extraction methods to psychometric data and
chitecture is used iterative optimization of linguistic variable

RASA shuttl |
is possible. The initial rules were derived in Section VI. The SA shuttle, present_ed below. .
We have used the Iris example for pedagogical reasons only.

cost function in Eq. (18) allows for final optimization of lin- o .
L . . . eclassification accuracy (in-sample accuracy for the whole
guistic variables. Fuzzy rules allow for direct gradient-base

optimization. For crisp rules probabilites should be introduceu‘al taset) of rules derived by several rule extraction systems are

first, as described in Section VIII, or non-gradient optimizatioﬁoueCted in Table IV. Unfortunately the statistical estimation

techniges should be used. Different values ofyfaadA 1 pa- of accuracy (out-of-sample accuracy) has not been given by the

. . / authors of these methods (such comparison is done on data with
rametersXz2 is not so important here) lead to a hierarchy of rules ; o
o : L Separate test parts). Nevertheless complexity and reclassifica-
with increasing reliability. . . . .
tion accuracy of rules found by different methods give some idea

This process is illustrated below on the Iris data. In the previ- . . . .
. : 1) i about their relative merits. The number of rules and conditions
ous section the simplest set of ruR$Y using only one feature

; ) " does not characterize fully the complexity of the set of rules,
x3, was found. Lowering the final hyperparamekarleads to _. - “ ; "
: X since fuzzy rules have additional parameters. “Else” condition
the following set of rules: ;
is not counted as a separate rule.
R (12>: setosaifixz < 2.9 V x4 < 0.9) (100%) The neurofuzzy NEFCLASS system [70] belongs to the best
R (22): versicolor if (xs € [2.9,4.95 A x4 € [0.9,1.65)  (100%) of its klnd and if it had usec_i context dependent Imgwsn_c vari-
R @ virinica if 495 165 94% ables it would probably achieve better results, but following the
3 - virginica if (xs > 4.95) V (x4 > 1.65) (94%) crowd the authors used three equally distributed fuzzy sets for
1We are grateful to Norbert Jankowski for this idea. each feature. The best 7 fuzzy rules classified correctly 96.7%



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 18

TABLE IV
SUMMARY OF RULE EXTRACTION RESULTS FOR THERIS DATASET.
F=Fuzzy, C=CrISR R=ROUGH, W=WEIGHTED.

Web page. As we have already stressed rules are useful if they
are comprehensible and accurate. Although many sets of rules
of various complexity have been found only the simplest and the

most accurate sets of rules are given here. They may be used as

Method Rules/cond] Type | Reclassification] & reference or benchmark for other rule extraction systems.

features accuracy Crossvalidation is useful as a measure of generalization capa-
ReFuNN [10] 9/26/4 E 05.7 bility since classifiers may overfit the training data. Such danger
ReFuNN [10] 14/28/4 E 95.7 does not exist if a small number of simple rules is extracted.
ReFuNN [10] 104/368/4 | F 95.7 Accuracy on the training data should in such cases be similar
Grobian [72] 118/-/4 R 100.0 as the accuracy on the test data and the differences tell us more
GA+NN [65] 6/6/4 wW 100.0 about the statistical representativeness of the training and the
NEFCLASS[70] 7/28/4 = 96.7 test data than about the classification method itself (cf. results
NEFCLASS[70] 3/6/2 E 96.7 for larger datasest given below). Statistical tests, such as the
FuNe-I[74] 7/-13 = 96.0 stratified 10-fold crossvalidation or the leave-one-out tests, are
C-MLP2LN 21271 C 957 difficult to perform since rules have to be extracted many times.
C-MLP2LN 2/2/2 C 96.0 Moreover, since different rules may be extracted for different
C-MLP2LN 2/3/2 C 98.0 data partitions it is impossible to present a single set of rules or
SsV 2/2/2 C 98.0 to compare rules obtained by different methods.

The simplest form of rules is frequently quite stable when
training on 90% of the data. In the mushroom case described be-
low it is sufficient to use 10% of the data for training to find the
of data. The system is not able to reduce the number of fegst two rules that cover 99.4% of all the cases. During cross-
tures automatically, but if used with the last two iris features {f3|igation it may happen that the rare cases, covered by the two
will give the same performance using only 3 best rules (out of@maining rules, will be missing from the training part and thus
possible) with 6 conditions. Other neurofuzzy systems, such @g rules will not be found. Thus the averaged accuracy of the
FuNe-I[74], give even worse results. Kasabov [71] has used higethod will be below 100%, although the method is capable of
neurofuzzy FUNN system partitioning each feature into 5 fuzzyding 100% accurate rules for this data. Crossvalidation may
linguistic variables, obtaining as a result 104 fuzzy rules withot e so useful for evaluation of the rule extraction methods.
368 conditions (for 150 data vectors)! Instead of compressionQuite frequently only the reclassification accuracy (in-sample
ofinformation that logical rules should provide a reverse procegg overall accuracy) on the whole dataset for extracted rules is
occurred. Ishibuctet al. [66] report better results by combining quoted. This may not be sufficient to estimate statistical accu-
several fuzzy systems and using various voting methods. Jagigley of rules, therefore in a few cases crossvalidation results are
skaet al. [65] reports 100% re-classification accuracy with §|so given here. The best comparison of accuracy is offered on
genetically optimized weighted rules, which mans that the dafge dataset with the separate test part, such as the hypothyroid
is overfitted and the method should give poor result in crossvgyr the NASA shuttle problem. We have analyzed 6 databases
idation tests of classification accuracy. Unfortunately the majgith such separate test sets, allowing to judge generalization ca-
purpose of building rule-based systems, i.e. comprehensibilB&bi"ty of the methods proposed in this paper.
of data description, is lost in both cases. Rule extraction methods should not be judged only on the

Rough sets also do not produce comprehensible descriptigésis of the accuracy of the rules but also on their simplicity and
of this simple data, producing a large number of rules. GrobiaReir comprehensibility. The simplest rules are usually rather
[72] uses 118 rules for perfect classification, clearly overfittingtable in crossvalidation tests and for such rules reclassification
the data, reaching only 91-92% in 10-fold crossvalidation testgecuracy is close to statistical estimations.

Earlier application of rough sets to the Iris data [73] gave very
poor results (77% accuracy), probably because 4 linguistic &~ Mushrooms.

tributes per feature were used. This shows again the importance, the mushroom problem [1], [7] the database consists of

of optimization and the use of context-dependentlinguistic vaig1 24 vectors, each with 22 symbolic attributes with up to 12
ables instead ohd hoc partitions of input features. Thus evengifferent values, equivalent to 118 logical features. 51.8% of

such a simple data seems to be difficult to handle for many rujgs cases represent edible, and the rest non-edible (mostly poi-

A single neuron is capable of learning all the training samples
X. ILLUSTRATIVE APPLICATIONS (the problem is linearly separable), but the resulting network has

We have analyzed a large number of datasets comparing S@ny nonzero weights and is difficult to analyze from the logical
results with the results obtained by other methods whenever pB8int of view. Using the C-MLP2LN algorithm with the cost
sible. Many results, including explicit logical rules, are colfunction Eq. (10) the following disjunctive rules for poisonous
lected at the: mushrooms have been discovered:

http://www.phys.uni.torun.pl/kmk/projects/rules.html R 1) odor=-(almondvanise/none)
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TABLE V
SUMMARY OF RULE EXTRACTION RESULTS FOR THEMUSHROOM
DATASET, RECLASSIFICATION ACCURACY IS GIVEN IN PERCENTS

R 2) spore-print-color=green

R 3) odor=nonastalk-surface-below-ring=scaly
(stalk-color-above-ringsbrown)

R 4) habitat=leavescap-color=white

Rule R misses 120 poisonous cases (98.52% accuracyMethod Rules/cond.] Reclassification
adding ruleR ; leaves 48 errors (99.41% accuracy), adding third features Accuracy
rule leaves only 8 errors (99.90% accuracy), and all rRlaso RULENEG[33] 300/8087 91.0
R 4 classify all poisonous cases correctly. The first two rules areReaL [31] 155/6603 98.0
realized by one neuron. For large value of the weight-decay gapepgec [37] 26/26 99.8
rameter only one rule with odor attribute is obtained, while fgr TREX[1] 3/13 100.0
smaller hyperparameter values a second attribute (spore-pring4 5 (decision tree) 3/3 00.8
color) is left. Adding a second neuron and training it on the RULEX[44] 1/3/1 985
remaining cases generates two additional riReshandling 40 | gyccessive Regulariz.[9 1/4/2 99.4
cases an@4 handling only 8 cases. We have also derived thegccessive Regulariz.[9§ 2/22/4 99.9
same rules using only 10% of all data for training, therefore r¢-gccessive Regulariz.[9 3/24/6 100.0
sults from crossvalidation should be identical to the results giveTE P2 N, SSV 1/3/1 985
in Table V. This is the simplest systematic logical description ofc_p p2LN, SSV 2/4/2 99.4
the mushroom dataset that we know of (some of these rules have_p_p2LN 3/7/4 99.9
probably been also found by the RULEX and TREX algorithms ggy/ 3/7/4 99.9
[1]) and therefore should be used as a benchmark for other rblg:_\ p2LN 4/9/6 100.0
extraction methods. SSvV 4/9/5 100.0

For the mushroom dataset SSV tree has found 100% accu-
rate solution which can be described as four logical rules using
only 5 attributes. The first of these is identical as found by the
C-MLP2LN, but next two rules are different, using “gill-size”noise in the data. Such artificial data may be difficult to han-
instead of stalk and cap related attributes. Since the last tai@. Attempts to train the MLP2LN network with a single neu-
rules cover only a small percentage of all cases many equivaleoh were not successful — convergence was unacceptably slow
descriptions are possible. SSV rules give perhaps the simplast therefore the final error was too large. It was necessary to

set of rules found so far. train two or more neurons in the hidden layer simultaneously.
R 1: odor=-(almondvanise/none) The numb_er of neurons tfa_lined should be increased until con-
R ,: spore-print-color= green vergence is fast (the defmmqn of “fast” depends on the data, but
R 3: gill-size = narrowa (stalk-surface-above-ring = it does not dlffe_r from evaluation of the convergence of standard
(silky v scaly)/ population = clustered MLP). After training on the Monk 1 data the weights for the two

neurons were frozen (Fig. 9). This technique has also been used

If odor is removed from the list of available features 13 rule) the Monk 2 problem where up to four neurons were trained
are needed to reach 100% correct classification. This exampi@ultaneously (real data never required more than 2 neurons to
illustrates how important the simplicity of the rules is. Althoug?€ Simultaneously trained).
neural and other methods may give a perfect solution logical Initial rules derived for the Monk problems were too general,
rules derived here give probably the most comprehensible des. each rule covered relatively large percentage of cases from

scription of the data. a wrong class. The first two neurons in the Monk 1 problem
classify properly all positive examples accepting some nega-
B. The 3 Monk problems. tive ones. The patterns which are not recognized properly are

The three monk problems are artificial, small problems ddreated as exceptions to the general rules extracted from the net-
signed to test machine learning algorithms [67], [1], [76]. EacWork. The hidden layer had to be extended adding neurons with
of the three monks problems is to determine whether an objécfiegative contribution to the output node. After the whole rule
described by six features (shown in Fig. 9) is a monk or not. THextraction process is finished two separate sets of rules are ob-
3 problems define “being a monk” as having features satisfyitgined, one comprising information on positive examples, and

the following formulae respectively: the other describing exceptions, modifying the first set of rules.
1. head shape = body shapgacket color =red Below we will use the word “rules” to mean the rules of the first
2. exactly two of the six features have their first values set, and the word “exceptions” for the members of the second
3. = (body shape @ctagon \ jacket color =blue) set. To classify a pattern correctly, the first condition one ought
v (holding =sward A jacket color =green) to check is whether it is an exception, and then (only if it is not

There are 432 combinations of the 6 symbolic attributes. Fu€) the basic classification rules can be applied to determine if
the first problem 124 cases were randomly selected for the tratfie pattern belongs to the class.
ing set, in the second problem 169 cases and in the third problenC-MLP2LN method applied to the Monk 1 problem needed
122 cases of which 5% were misclassifcations introducing sortigee passes (one pass, or training stage, is a single process
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head shape
body shape
. - yes
issmiling o
sword
holding balloon
flag
red
jacket yellow %
colour green 7
blue
. yes
hastie o

Fig. 9. Thenetwork for the Monk 1 problem. Thefirst two neurons were taught
simultaneously. The other two handle exceptions.

of training leading to convergence, finished with freezing the
weights of all trained neurons). The two hidden neuronstrained
during the first pass recognized al the positive examples and
11 negative ones. In the second training pass one hidden neu-
ron detected 6 exceptions and in the third pass another hidden
neuron was taught the remaining 5 exceptions. Some statistics
concerning al the stages of the algorithm for all 3 Monk prob-
lemsisgivenin Table VI. Successive columns of the table have
the following meaning: the first specifies problems and the fi-
nal numbers of generated rules and exceptions, the second enu-
merates particular stages, the third gives the number of neurons
trained simultaneously and fourth says if the aim was search-
ing for rules or exceptions (to highlight the difference rules are
printed in bold and exceptionsin italic). The fifth column con-
tains the numbers of instances classified properly thanksto rules
generated during a given pass. The last column supports our
claim that the method learns the most common rules first. The
isolated cases are being recognized after subsequent stages.

In the Monk-1 problem 4 rules and 2 exceptions have been
generated, altogether composed of 14 atomic formulae. They
classify the training data without any errors.

Although the definition of the Monk-2 problem is very sim-
ple, the training process required much more effort. As shown
in Table VI it needed the biggest number of passes of the algo-
rithm. Each of the three first rule searching stages ended with
some exceptions and thence required additional stages. More-
over last stages made the impression that the relations among
the training samples were very difficult to detect. Three passes
trained networkswith two hidden units, and thelast onerequired
even four units. It isworth to point out that the four nodes of the
network constructed during the last pass are responsible for cor-
rect classification of just five examples. This shows how the
neurons trained in the final passes of our algorithm can special-
izein recognizing patternswhich do not resemble other patterns.

20

TABLE VI
TRAINING STAGES IN THE 3 MONK PROBLEMS.

| Problem | PassNo. | Neurons | RulesExc. | Examples |

Monk 1 1 2 rules 42
4rules 2 1 exceptions 6
2 exceptions 3 1 exceptions 5
Monk 2 1 1 rules 33
16 rules 2 1 exceptions 5
8 exceptions 3 1 rules 16

4 2 exceptions 6

5 2 rules 10

6 2 exceptions 3

7 4 rules 5
Monk 3 1 1 rules 57
3rules 2 2 exceptions 5
4 exceptions 3 1 rules 3

16 rules and 8 exceptions were extracted from the resulting net-
work. The number of atomic formulae which compose them is
132,

The third Monk problem also required one additional passto
find exceptions. Two neurons gave three rules, and two other
neurons generated four exceptions. The whole logical system
for this case contains 33 atomic formulae. Although the data has
been deliberately contaminated with 5% noiseit is well known
[67] that rules giving 100% accuracy may be found.

FSM fuzzy rules obtained with Gaussian membership func-
tions were not so good as the crisp rules from C-MLP2LN. For
the Monk 1 problem 16 rules were generated, giving 97.9% ac-
curacy on the training and 94.5% accuracy on the test set. For
Monk 2 the number of generated rules was 32, and the accuracy
was 94% on training and only 79.3% on the test set. 15 rules
generated for Monk 3 gives 96.7% on the training and 95.5%
on the test set. Soft decision borders are not appropriate for
this problem, therefore fuzzy methods will not be as accurate
as crisp rule extraction. Results obtained with many machine
learning rule-based systems described in the original paper on
the 3 monk problems[67] are compared in Table VI1I.

C. Theappendicitis data.

The appendicitis data contains only 106 cases, with 8 at-
tributes (results of medical tests), and 2 classes: 88 cases with
acute appendicitis and 18 cases with other problems. For this
small dataset very simple classification rules have been found
by Weiss and Kapouleas [80] using their PVM (Predictive Value
Maximization) approach. Since PVM makes exhaustive search
testing all possible simple rules we may be sure that thisisin-
deed the simplest solution. Using histogramsfor the two classes
initial linguistic variableswere found. Initialy two simple rules
have been found [81]:

MNEA > 6650 MBAP > 12 (28)
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TABLEVII
COMPARISON OF RESULTS FOR THE 3 MONK DATASETS, ACCURACY ON
THE TEST SET IN %.

Method Monk-1 | Monk-2 | Monk-3
AQ17-DCI 100 100 94.2
AQ17-HCl 100 93.1 100
AQ17-GA 100 86.8 100
Assistant Pro. 100 815 100
mFOIL 100 69.2 100
ID5R 79.7 69.2 95.2
IDL 97.2 66.2 -
ID5R-hat 90.3 65.7 -
TDIDT 75.7 66.7 -
ID3 98.6 67.9 94.4
AQR 95.9 79.7 87.0
CN2 100 69.0 89.1
AQR 95.9 79.7 87.0
CLASSWEB 0.10 71.8 64.8 80.8
CLASSWEB 0.15 65.7 61.6 85.4
CLASSWEB 0.20 63.0 57.2 75.2
PRISM 86.3 72.7 90.3
ECOWERB, ext 82.7 71.3 68.0
Neural methods

MLP 100 100 93.1
ML P+regularization 100 100 97.2
Cascade Corelation 100 100 97.2
FSM, fuzzy rules 94.5 79.3 95.5
SSV, crisprules 100 80.6 97.2
C-MLP2LN rules 100 100 100

The overall accuracy of these rulesis 91.5%. Since these are
essentially the same rules as found by Weiss and Kapoul eas [80]
using their PVM approach the leave-one-out accuracy should
also be close to 89.6%. Rules are rather robust and do not
change much if a single vector is removed from the training set
in the leave-one-out procedure. Although we have improved
classification accuracy by generating two more rules (adding a
second neuron) thefirst of these rules coversjust 2 cases and the
second just one case. Such rules are more likely dueto the noise
in the data then to a highly specific and rare case of interest to
an expert. Using L-units and random MLP initialization another
set of rules giving 89.6% of accuracy has been found:

WBC1 > 8400V MBAP > 42 (29)
with the confusion matrix P = ( 81‘ 1(1) ) Here column la-

bels are of thetrue class and row labels of the assigned class, i.e.
one real appendicitis case was classified as “ other problem” and
10 “other problems” as appendicitis. For comparison [75] k-NN
in the leave-one out test gives 82.1% and with optimization of
distance function and k accuracy is about 89%, MLP reaches
about 86% and Bayes rule 83%. C4.5 decision tree gives 3 rules
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correctly covering 91.5% of all cases. For this case we would
expect about the same accuracy in the leave-one-out tests from
our C-MLP2LN rules, PVM rules and CART or C4.5 decision
trees since these methods consistently generate similar rules for
this dataset. 12 fuzzy rules from FSM achieve 84.5% accuracy
in the leave-one-out test, and in the 10-fold crossvalidation ac-
curacy isonly dlightly lower, 84.3%.

The decision tree built with SSV converted into logical rules
givesjust two rules per class. Becausethereareno* don’t know”
answers, only the rulesfor one of the cases need to be presented,
the other class can be summarized using the EL SE condition.
The first rule obtained using separability criterion gives 91.5%
accuracy. The second one is already unreliable, covering only
three additional data vectors and increasing the accuracy of re-
classification to 94.3%.

R 1: HNEA < 7520.5AMBAP < 12
R »: HNEA € (9543.5, 9997.5)

Statistical accuracy is of course lower. In the leave-one-out
test rules differ only dlightly for different runs, achieving 89.6%
of accuracy. In the 10-fold crossvalidation tests (repeated 10
times) SSV rules achieve on average 86.3% accuracy (best re-
sults +2.6% and worst -1.1%). In Table VIII results of differ-
ent methods for this dataset are compared. 12 fuzzy rules from
FSM were derived using Gaussian membership functions. We
have not made the leave-one-out test with the more complex
C-MLP2LN rules, but the results should be close to 89.6% ob-
tained with a single neuron and with SSV rules.

TABLEVIII
RESULTS FOR THE APPENDICITISDATASET; RECLASSIFICATION AND THE
LEAVE-ONE-OUT ACCURACY ARE GIVEN IN PERCENTS.

Method Reclassific. | L-one-out
SSV, 2 crisp rules (our) 94.3 89.6
C-MLP2LN, 1 neuron (our) 91.5 89.6
PVM [75] 91.5 89.6
ML P+backprop [75] 90.2 85.8
CART [75] 90.6 84.9
FSM, 12 fuzzy rules (our) 92.5 84.4
Bayes[75] 88.7 83.0
k-NN [75] - 82.1
C-MLP2LN, 2 neurons (our) 94.3 -

D. Hepatitis.

This is another small medical database from UCI [7], con-
taining only 155 samples belonging to two different classes (32
“die” cases, 123 “live” cases). There are 19 attributes, 13 bi-
nary and 6 attributes with 6 to 8 discrete values. This data is
quite “dangerous’ to use, since it contains many missing values
—for some features almost half of the vectors have missing val-
ues. Using averages of these missing values leads to very good,
but quite useless results. For example, using L-units to generate
linguistic variables we were able to find one rule for the “die”
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class, achieving overall 96.1% of accuracy.

age > 30\ sex=maeA fatigue= noAprotime<50 (30)
The confusion matrix (live, die) isnow: P = 122 23

Thissingleruleisvery accurate but it uses variable* protime”
which is missing in almost half of the cases. Rules discovered
using the C-MLP2LN method do not contain such misleading
attributes [81]:

age > 52 A bilirubin> 3.5
histology = yesA ascites= no A age € [30, 51]

TABLE IX
RESULTS FROM THE 10-FOLD CROSSVALIDATION FOR THE HEPATITIS
DATASET.

Method Accuracy | Remarks
k-NN, k=18, Manhattan | 90.2+ 0.7 | our result
FSM + rotations 89.7 | our results
LDA 86.4 | Ref. [8g]

Naive Bayes 86.3 | Ref. [88]

IncNet + rotations 86.0 | Ref. [69]

QDA 85.8 | Ref. [8§]

1-NN 85.3 | Ref. [88]

ASR 85.0 | Ref. [88]

FDA 84.5 | Ref. [88]

LVQ 83.2 | Ref.[8§]

CART 82.7 | Ref. [88]

MLP with BP 82.1 | Ref.[88]

ASl 82.0 | Ref. [8]

LFC 81.9 | Ref. [88]

Deafult 79.4

These rules classify correctly 14 of the 32 vectors represent-
ingthe“die” class, giving 88.4% accuracy for the reclassifcation
of the whole dataset. Further efforts to add new neuronsto clas-
sify the remaining data lead to a large number of rules which is
aclear indication of data overfitting.

The highest accuracy, 90.2 + 0.7% was obtained using k-
nearest neighbors method, with only dlightly lower accuracy of
89.7% obtained from FSM generating fuzzy rules, using Gaus-
sian membership functions and allowing for rotation. Other
classification methods give dightly lower accuracy, for example
CART decision tree giving only 82.7%, k-NN 85.5% (for k=1)
and linear discriminants analysis 86.4%. A majority classifieris
correct in 79.4% of cases.

Considering that k-NN has rather small variance of 0.7% the
differences between the two best methods and the rest are sig-
nificant. The two best methods provide quite complex decision
borders, perhapsindicating that classification using simplerules
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cannot be accurate in this case. One may still argue that logical
rules are a reasonable way to approach such small datasets. Al-
though statistical accuracy offered is lower rules give at least
some guidance and alow for validation of the classification
model by experts.

E. Theljubliana cancer data.

The Ljubliana cancer data [7] contains 286 cases, of which
201 are no-recurrence-events (70.3%) and 85 are recurrence-
events (29.7%). There are 9 attributes, with 2 to 13 different
values each. A singlelogical rule for the recurrence-events:

involved nodes=-0, 2] A Degree-malignant = 3

with EL SE condition for the second class, gives over 77% accu-
racy in crossvalidation tests. Such simple rule cannot overfit the
dataand isfound on any crossvalidation partition. Thereforethe
10-CV accuracy is identical to reclassification accuracy. This
ruleis easy to interpret: recurrenceis expected if the number of
involved nodes is bigger than 2 and the cells are highly malig-
nant. More accurate optimized rules:

R 1: Degree maignant = 3 A breast=left A node caps=yes
R 2: (Degreemalignant = 3 \ breast=left) A age= ¢ [30—49]A
tumor size = [35-54]

give slightly higher reclassification accuracy, but no increasein
crossvalidation. Sincethe dataset is small many different sets of
rules may give similar accuracy. Using the separability split val-
ues (SSV) to generate linguistic variables one rule for the class
of recurrence-eventsis obtained:

involved nodes—[0, 2] A Degree-malignant € [2,4]

achieving 76.2% accuracy in reclassification of the data. More
complex set of 3 rules obtained using SSV gives 77.6% accu-
racy and in the 10-fold crossvalidation tests an average of 73.5%
(worst result -0.8%, best +1.0%), i.e. only afew percent above
the default value, indicating that rules are already too complex
and overfit the data. Several machine learning methods give re-
sults below the default, as shown in Table X.

It would be hard to improve upon result of these simplerules,
which are easily understood by anyone. We doubt that there is
any more information in this dataset. Most methods give signif-
icantly lower accuracy using more complex models. For exam-
ple, FSM with 33 fuzzy rules givesresultsthat are only insignif-
icantly better than the default accuracy. LERS [78], a machine
learning technique based on rough sets, gave after optimization
almost 100 “certain” rules and about the same “possible” rules,
achieving accuracy that is below the majority rate. Although it
may not be the limit of accuracy for rough set systems the num-
ber of rules produced by such systemsisusually quitelarge, and
thus the insight into the knowledge hidden in the data is lost.
FSM generates 33 rules with Gaussian membership functions,
achieving 71.4% accuracy on the test part and 85.4% accuracy
on the training part. CART decision tree gave the best resullts,
77.1% in the crossvalidation tests. Since CART reclassification
results are not much better little difference between reclassifi-
cation and crossvalidation accuracy of the MLP2LN and SSV
rules should be expected.
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TABLE X
10-FOLD CROSSVALIDATION AND RECLASSIFCATION ACCURACY IN % FOR
THE LJUBLIANA CANCER DATASET.

| Method | 10-foldCV | Remarks |
C-MLP2LN, 1rule 77.1 | our result
CART, PVM 77.1 | Ref. [75]
Naive Bayesrule 75.9 | Ref. [75]
SSV, 3rules 73.54+0.9 | our result
FSM, 33 fuzzy rules 71.4 | our result
MLP + BP 715 | Ref. [75]
Default 70.3
AQ15 66-72 | Ref. [86]
Weighted network 68-73.5 | Ref. [87]
LERS (rough rules) 69.4 | Ref. [78]
k-NN 65.3 | Ref. [75]
Reclassification
Assistant-86 78.0 | Ref. [85]
C-MLP2LN, 2 rules 78.0 | our result
SSV, 3rules 77.6 | our result
SSV, 1rule 76.2 | our result

F. The Cleveland heart disease data.

The Cleveland heart disease dataset [7] (collected at V.A.
Medical Center, Long Beach and Cleveland Clinic Foundation
by R. Detrano) contains 303 instances, with 164 healthy (54.1%)
instances, the rest are heart disease instances of various severity.
While the database has 76 raw attributes, only 13 of them are
actually used in machine learning tests, including 6 continuous
features and 4 nominal values. There are many missing values
of the attributes. Results obtained with various methods for this
data set are collected in Table XI.

After some simplifications rules derived by the C-MLP2LN
approach are:
R 1: (thal=0 v thal=1) A ca=0.0
R 2: (tha=0 Vv ca=0.0) A cp#£ 2

(88.5%)
(85.2%)

These rules give 85.5% correct answers on the whole set and
compare favorable with the accuracy of other classifiers. Three
rules describing the Cleveland heart data obtained using SSV
method are 85.8% accurate (the first rule containing alternative
is counted as two rules):

R 1: ca=0.0 A (thal =0V exang = 0)
R2:cp#£2Asope#£2

These rules are quite similar to rules generated by C-
MLP2LN. 10-fold crossvalidation using SSV method gives an
average of 81.84+1.6% accuracy and the leave one out results
are about 1% better. 27 fuzzy rules were generated by FSM,
achieving 93.4% on the training and 81.8+1.6% on the test part.
Theseresultsarelower than those discriminant analysis, perhaps
indicating the need to provide rotated sharp decision borders.
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TABLE XI
RESULTS FROM THE 10-FOLD CROSSVALIDATION FOR THE CLEVELAND
HEART DISEASE DATASET.

Method Accuracy Ref.
k-NN, k=28, 7 features 85.1+0.5 | our result
Linear Discriminant Analysis 84.5 [88]
Fisher LDA 84.2 [88]
Naive Bayes 83.4 [88]
Bayes (pairwise dependent) 83.1 [88]
LVQ 829 [88]
k-NN, k=27, Manhattan 82.8+0.6 | our result
ML P+backprop 81.3 [88]
CART (decision tree) 80.8 [88]
Quadratic Discriminants 75.4 [88]
LFC, ASl, ASR decision trees | 74.4-78.4 [88]
FSM, 27 fuzzy rules 82.0 | our result
SSV, 3rules 81.8+1.6 | our result

G. Wisconsin breast cancer data.

The Wisconsin cancer dataset [68] contains 699 instances,
with 458 benign (65.5%) and 241 (34.5%) malignant cases.
Each instance is described by the case number, 9 attributes with
integer valueintherange 1-10 (for example, feature f 2 is“clump
thickness” and fg is“bland chromatin™) and abinary classlabel.
For 16 instances one attribute is missing. This data has been
analyzed in a number of papers (Table XI1).

The simplest rules obtained for the malignant class using C-
MLP2LN are:

fo>7vi;>6 (95.6%)

These rules cover 215 malignant cases and 10 benign cases,
achieving overall accuracy (including the ELSE condition) of
94.9%. More complex network gave 5 digunctive rules for the
malignant cases, with benign cases covered by the EL SE condi-
tion:

Ri:fo<b6Afs<dnf;<2Afg<5b (100)%
Ry fo<B6Afg<4nfr<2Afg<5 (100)%
Ra:fo<bAfa<dnTfs<dnf; <2 (100)%
Ra f2€[6,8Afa<dnfs<dnf;<2nfg<b (100)%
Rs: fo<bAfa<dnfs<dnfre[2,7]Afg<5 (92.3)%

The first 4 rules achieve 100% accuracy (i.e. they cover

cases of malignant class only), the last rule covers only 39
cases, 36 maignant and 3 benign. The confusion matrix is:
p_ 238 3

- 25 433
sified as malignant and 25 malignant cases wrongly classified as
benign, giving overall accuracy of 96%. Optimization of this set
of rules (Eq. 18) gives:

, i.e. there are 3 benign cases wrongly clas-

Ri:fo<B6Afs<3Afg<8 (99.8)%
Ry fo<9Afs<4nfr<2Afg<5 (100)%
Ra: fo<10Afs<4d4NnTfs<d4nfr <3 (100)%
Ra fa<7Afa<9INTs<3ATr€[49NTg<4

(100)%
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Rs: f2e[34Afa<9NTs<10Af<B6ATg<8
(99.8)%
These rules classify only 1 benign vector as malignant (R 1
and R 5, the same vector), and the EL SE condition for the be-
nign class makes 6 errors, giving 99.0% overall accuracy. In all
cases features f3 and fg (both related to the cell size) were not
important and f, with f7 were the most important.

TABLE XII
RESULTS FROM THE 10-FOLD CROSSVALIDATION AND RECLASSIFICATION
FOR THE WISCONSIN BREAST CANCER DATASET.

| Method | Accuracy | Ref. |
IncNet 97.1 [69]
k-NN 97.0+0.12 our result
Fisher LDA 96.8 [88]
ML P+backprop 96.7 [88]
LVQ 96.6 [88]
Bayes (pairwise dependent) 96.6 [88]
Naive Bayes 96.4 [88]
DB-CART 96.2 [79]
LDA 96.0 [88]
LFC, ASl, ASR dec. trees 94.4-95.6 [88]
CART (dec. tree) 935 [79]
Quadratic DA 345 [88]
FSM, 12 fuzzy rules 96.5 our result
SSV, 3crisprules 96.3+0.2 our result
Results from reclassification Rules/type
C-MLP2LN 99.0 | 5, C, our result
C-MLP2LN 97.7 | 4, C, our result
Ssv 97.4 | 3, C, our result
NEFCLASS 96.5 4, F[70]
C-MLP2LN 94.9 | 2, C, our result
NEFCLASS 92.7 3, F[70]

Using L-units 4 more accurate rules for the malignant class
are created (their reliability isin parenthesis):

R 1: fa<3ANfs5<d4NnT;<BATI0O=1 (995)%
Ry fo<7Afs<4nfr<B6AT10=1 (99.8)%
Ra: fo<7Afs<3Af7<B6AT10=1 (99.4)%
Ra: fo<7Afa<3Af5<4Nfr<6 (99.4)%

Including the ELSE condition they give 97.7% overall

accuracy. The confusion matrix (benign, malignant) is
47 5 _ _ B
( 11 235 ) Only 5 malignant cases are misclassified as

benign. Fuzzified rules predict with almost 100% confidence
that these vectors belong to the wrong class, indicating that the
datais dightly noisy.

Minimization of Eq. (18) alows to enforce 100% reliability
of al rules. 8 rules were obtained, rejecting 51 cases (7.3% of
al vectors). For malignant class these rules are:

R1) fo<9nfa<4nf;<3nfg<6
Ro) fo<5Afs<8Af;<BAfg< 10
R3) fo<dNnfp<2Nfs<3NTr <7

Ra4) f2<10Afs<10Afre[1,5)Afg<2
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For the benign cases initia rules are obtained by nega-
tion of the above rules; after optimization the rule becomes:
—\(R 5\/R 5\/R VR 8): where:

R5) fo<8ATs<BANTfg< 4

Re) fao<9nfs<BAf;<9ATfg<5

R7) fo<ONTs<BAf5<8AT; <9

Rg) fo=6Af<10Afs<10Af;<2Nfg<9

For the Wisconsin breast cancer data SSV generates a very
simple set of 3 rulesfor the second class, achieving 97.4% of re-
classification accuracy. In the 10-fold crossvalidation test SSV
rules give on average 96.3% (worst —0.2%, best +0.2%) accu-
racy.

Rqi:fs>25A1;>25
R, fs > 251 fe >35Af;<25
Ra: fo >55Afs,<25Af;>16

The NEFCLASS neurofuzzy system has also been applied to
this data [70], removing 16 cases with missing values. The
system was initialized with fuzzy clustering method and used
three trapezoidal membership functions per input feature. Re-
classification error using 3 rules (8 conditions each, since one
feature has been deleted) gave 92.7% correct answers. Using
four rules and the “best per class’ rule learning results gave
only 80.4% correct answers, showing the usefulness of prior
knowledge from initia clusterization. If only two membership
functions per feature are used better reclassification accuracy of
96.5% is obtained using 4 fuzzy rules. FSM generated 12 rules
with Gaussian membership functions, providing 97.8% on the
training and 96.5% on the test part in 10-fold crossvalidation
tests. Thus crisp rules seem to offer simpler and more accurate
description of this dataset.

H. Diabetes.

The*Pimalndian diabetes’ dataset is storedinthe UCI repos-
itory [7] and is frequently used as benchmark data. All patients
were females at least 21 years old, of Pima Indian heritage. The
data contains 2 classes, 8 attributes, 768 instances, 500 (65.1%)
healthy and 268 (34.9%) diabetes cases. Our first attempts at
extracting rules for this dataset were not successful because his-
tograms do not provide a useful starting point here. L-units and
separability criterion provided good linguistic variables. This
dataset was used in the Statlog project [8], with the best 10-
fold crossvalidation accuracy around 77.7% obtained by logis-
tic discriminant analysis. One simple rule for the healthy cases
achieving 75% accuracy is.

f, < 151A fg < 47 (31)

where f; is the “plasma glucose concentration” and fg the
body mass index (weight in kg/(height in m)?). The confusion
. ) . 467 159
matrix (healthy, diabetes) is: 33 109
system with Gaussian functions generates 50 rules and achieves
in the 10-fold crossvalidation 85.3% accuracy on the training
part and only 73.8% on the test part. Since better results are

. FSM neurofuzzy



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

achieved using linear discrimination sharp and rotated decision
borders may be needed for optimal classification of this data.

TABLE XIII
RESULTS FROM THE 10-FOLD CROSSVALIDATION AND RECLASSIFICATION
FOR THE DIABETES DATASET, ACCURACY IN %.

| Method | Accuracy | Reference |

Logdisc 77.7 | Ref.[88]
IncNet 776 | Ref.[69]
DIPOL92 776 | Ref. [89]
LDA 775 | Ref.[89]
SMART 76.8 | Ref. [88]
ASl 76.6 | Ref.[88]
FDA 76.5 | Ref.[88]
BP 76.4 | Ref. [88]
LVQ 75.8 | Ref.[89]
RBF 75.7 | Ref. [88]
LFC 75.8 | Ref. [88]
NB 75.3 | Ref. [88]
SNB 754 | Ref. [88]
DB-CART, 33 nodes 744 | Ref.[79]
ASR 74.3 | Ref. [88]
FSM, 50 fuzzy rules 73.8 | our result
CART, 11 nodes 73.7 | Ref.[79]
C4.5 73.0 | Ref.[88]
CART 72.8 | Ref. [89]
Kohonen SOM 72.2 | Ref.[88]
kNN 71.9 | Ref.[89]
Reclasssification

C-MLP2LN, 2 rules 77.7 | ourresult
C-MLP2LN, 1rule 75.0 | our result

I. Hepatobiliary disorders

This data, used previously in [91], contains medical records
of 536 patients admitted to a university affiliated Tokyo-based
hospital, with four types of hepatobiliary disorders. acoholic
liver damage, primary hepatoma, liver cirrhosis and choléelithia-
sis. The records included results of 9 biochemical tests and sex
of the patient. The same 163 cases as in [91] were used as the
test data. In the previous work three fuzzy sets per each input
were assigned using recommendation of the medical experts. A
fuzzy neural network was constructed and trained until 100%
correct answers were obtained on the training set. The accuracy
on the test set varied from less than 60% to a peak of 75.5%.
Although we quote this result in the Table XIV below it seems
impossible to find good criteriathat will predict when the train-
ing on the test set should be stopped. Fuzzy rules equivalent to
the fuzzy network were derived but their accuracy on the test set
was not given. This data has also been analyzed by Mitraet al.
[92] using a knowledge-based fuzzy MLP system with results
on the test set in the range from 33% to 66.3%, depending on
the actual fuzzy model used.

For this dataset crisp ruleswere not too successful. Theinitial
49 rules obtained by C-MLP2LN procedure gave 83.5% on the
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training and 63.2% on the test set. Optimization did not improve
these results significantly. On the other hand fuzzy rules derived
using the FSM network, with Gaussian as well as with triangu-
lar functions, gave similar accuracy of 75.6-75.8%. Fuzzy neu-
ra network used over 100 neurons to achieve 75.5% accuracy,
indicating that good decision bordersin this case are quite com-
plex and many logical rules will be required. Various results for
this dataset are summarized in Table X1V.

TABLE X1V
RESULTS FOR THE HEPATOBILIARY DISORDERS. ACCURACY ON THE
TRAINING AND TEST SETS, IN %, ALL CALCULATIONSARE OURS.

Method Training set Test set
1-NN, weighted (ASA) 834 82.8
1-NN, 4 features 76.9 80.4
K* method - 785
kNN, k=1, Manhattan 79.1 779
FSM, Gaussian functions 93 75.6
FSM, 60 triangular functions 93 75.8
IB1c (instance-based) - 76.7
FSM, Gaussian functions 93 75.6
C4.5 decision tree 94.4 75.5
Fuzzy neural network 100 75.5
Cascade Correlation - 71.0
MLP with RPROP - 68.0
Best fuzzy MLP model 75.5 66.3
C4.5 decisionrules 64.5 66.3
DLVQ (38 nodes) 100 66.0
LDA (statistical) 68.4 65.0
49 crisp logical rules 835 63.2
FOIL (inductivelogic) 99 60.1
T2 (rules from decision tree) 67.5 53.3
1R (rules) 58.4 50.3
Naive Bayes - 46.6
IB2-1B4 81.2-85.5 | 43.6-44.6

FSM gives about 60 Gaussian or triangular membership func-
tions achieving accuracy of 75.5-75.8%. Rotation of these func-
tions (i.e. introducing linear combination of inputs to the rules)
does not improve this accuracy. We have also made 10-fold
crossvalidation tests on the mixed data (training plus test data),
achieving similar results. Many methods give rather poor results
on this dataset, including various variants of the instance-based
learning (IB2-1B4, except for the IB1c, whichis specifically de-
signed to work with continuous input data), statistical methods
(Bayes, LDA) and pattern recognition methods (LV Q). The best
results were obtained with the K* method based on algorith-
mic complexity optimization, giving 78.5% on the test set, and
kNN with Manhattan distance function, k=1 with selection of
features, giving 80.4% accuracy (for details see[6]).

J. The hypothyroid data.

This is a somewhat larger dataset [7], with 3772 cases for
training, 3428 cases for testing, 22 attributes (15 binary, 6 con-
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tinuous), and 3 classes: primary hypothyroid, compensated hy-
pothyroid and normal (no hypothyroid). The class distribution
inthetraining set is 93, 191, 3488 vectors and in the test set 73,
177, 3178. Initidly 4 rules were found, with 99.68% accuracy
on the training set and 99.07% accuracy on the test set. For the
first class two rules are sufficient (all values of continuous fea-
tures are multiplied here by 1000):

R 11: FTI < 63A TSH > 29
R 12: FTI < 63A TSH € [6.1,29)A T3< 20
For the second class oneruleis created:

R 2: FTI € [63,180]A TSH > 6.1/A0n thyroxine=no

A surgery=no
and thethird classis covered by the EL SE condition. With these
rules we get 99.68% accuracy on the training set and 99.07%
error on the test set. Optimization of these rulesleadsto dightly
more accurate set of rules:

R 11: TSH > 30.48A FTI < 64.27 (97.06%)
R 12: TSH € [6.02,29.53]A FTI < 64.27A T3< 23.22  (100%)
R 2: TSH > 6.02A FTI € [64.27,186.71]A TT4< [50,150.5)
A on thyroxine=no A surgery=no (98.96%)
The EL SE condition has 100% reliability on the training set.
These rules make only 4 errors on the training set (99.89%) and
22 errors on the test set (99.36%). They are similar to those
found using heuristic version of PVYM method by Weiss and
Kapouleas [80]. The differences among PVM, CART and C-
MLP2LN are for this dataset rather small (Table XV), but other
methods, such as well-optimized MLP (including genetic op-
timization of network architecture [89]) or cascade correlation
classifiers, give results that are significantly worse. Poor re-
sults of k-NN are especialy worth noting, showing that in this
case, despite large amount of reference vectors, similarity-based
methods are not competitive. 10 fuzzy rules obtained using FSM
with Gaussian membership functions are also less accurate than
the 3 crisp rules.

TABLE XV
RESULTS FOR THE HYPOTHY ROID DATASET.

| Method | %train | Y%test | Ref. |
C-MLP2LN 99.89 | 99.36 | our result
CART 99.79 | 99.36 [80]
PVM 99.79 | 99.33 [80]
SSV rules 99.79 | 99.33 | our result
FSM 10 rules 99.60 | 98.90 | our result
Cascade correl. 100.00 98.5 [89]
ML P+backprop 99.60 98.5 [89]
3-NN, 3 features used 98.7 97.9 | our result
Bayes 97.0 96.1 [80]
k-NN - 95.3 [80]

The C-MLP2LN solution seems to be close to optimal [77]).
Similar rules were obtained from the SSV separability criterion:

R 1: TSH > 6.05A FTI < 64.72A thyroid-surgery=no
R,: TSH > 6.05A FTI > 64.72A TT4 < 150.5
A thyroid-surgery =no A on-thyroxine=no
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These rules match our best results and have been found with
fully automatic rule extraction approach. Results are summa-
rized in Table XV. It is worth noting that the error of the best
neural network classifiersis still twice as large (1.5%) as the er-
ror made by these simple rules. Excellent results of rule-based
classifiers for this dataset show the need to provide sharp deci-
sion borders instead of soft borders provided by the fuzzy and
neural systems. This may be an artefact of providing sharp divi-
sioninto 3 output classes.

K. NASA Shuttle

The Shuttle dataset from NASA contains 9 continuous numer-
ical attributes related to the positions of radiators in the Space
Shuttle. There are 43500 training vectors and 14500 test vec-
tors, divided into 7 classes in a very uneven way: about 80%
from class 1 and only 6 examples from class 6 in the training
set. This data has been used in the Stalog project [8], therefore
accuracy of our rules may be compared with many other classi-
fication systems (Table XV1).

We have used the FSM network with rectangular member-
ship functions and SSV criterion here. Initialization of the net-
work gives 7 nodes achieving already 88% accuracy. Increasing
accuracy (using constructive learning algorithm) on the train-
ing set to 94%, 96% and 98% leads to atotal of 15, 18 and 25
nodes and accuracieson the test set of 95.5%, 97.8% and 98.5%.
Backpropagation network reached an accuracy of 95.5% on the
training set. k-NN is very slow in this case, requiring all 43500
training vectors as reference for computing distances, reaching
on the test set 99.56% but with feature selection improving to
99.95%. Optimization of the FSM rules generated 15 logical
rules. For example, for the third classrules are:

F2 € [~188.43,—27.50| AF9 € | 1,74]
F2 € [~129.49, 2111 AF9 € [17,76]

The set of 17 rules makes only 3 errors on the training set
(99.99% accuracy), leaving 8 vectors unclassified, and no errors
on the test set but leaving 9 vectors unclassified (99.94%). After
Gaussian fuzzification of inputs (very small, 0.05%) only 3 er-
rors and 5 unclassified vectors are obtained for the training and
3 vectors are unclassified and 1 error is made (with the proba-
bility of correct class for this case close to 50%) for the test set.
Rules from SSV gave even better results: 100% correct on the
training and only 1 error on the test set.

These results are much better than those obtained from the
MLP or RBF networks (as reported in the Stalog project [8])
and comparable with the results of the best decision trees which
work very well for this problem. It is interesting to note that in
the Stalog project the NewlD tree (descendant of the ID3 tree),
which gave the best results here, has not been among the first
3 best methods for any other of the 22 datasets analyzed. Re-
sults of the C4.5 decision tree are already significantly worse.
Our rule extraction approach has consistently been giving top
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TABLE XVI
SUMMARY OF RESULTS FOR THE NASA SHUTTLE DATASET.

| Method | Train | Test | Ref. |
SSV, 32rules 100.00 | 99.99 | our result
NewlID dec. tree 100.00 | 99.99 [8]
FSM, 17 rules 99.98 | 99.97 | our result
k-NN + feature sal. - 99.95 | our result
C4.5 dec. tree 99.96 | 99.90 [8]
k-NN - 99.56 [8]
RBF 98.40 | 98.60 [8]
MLP+BP 95.50 | 96.57 [8]
Logistic discrimination | 96.07 | 96.17 [8]
Linear discrimination 95.02 | 95.17 [8]

results. Logical rules provide highly accurate and quite simple
description of Shuttle dataset.

L. Psychometric data

Our methodology of extraction and optimization of logica
rules has been used by us in several red-life projects. One of
these projects concerns the psychometric data collected in the
Academic Psychological Clinic of our University. Minnesota
Multiphasic Personality Inventory (MMPI) test was used, con-
sisting of 550 questions with 3 possible answers (yes, no, don’t
know) each. MMPI evaluates psychological characteristics re-
flecting social and personal maladjustment, including psycho-
logical dysfunction. Hundreds of books and paperswerewritten
on the interpretation of this test (cf. review [93]). Many com-
puterized versionsof the MMPI test exist to assist ininformation
acquisition, but evaluation of results is still done by an experi-
enced clinical psychologist. Our goal is to provide automatic
psychological diagnosis.

Theraw MMPI datais used to compute 14 real-valued coef-
ficients (this corresponds to manual aggregation of input data),
called “psychometric scales’. These coefficients are often dis-
played as a histogram (called “a psychogram”) allowing skilled
psychologists to diagnose specific problems, such as neuro-
sis, drug addiction or criminal tendencies. First four coeffi-
cients are just the control scales (measuring consistency of an-
swers, alowing to find malingerers etc.), with the rest forming
clinical scales. These scales were developed to measure ten-
dencies towards hypochondria, depression, hysteria, psychopa-
thy, paranoia, schizophrenia etc. A large number of simplifi-
cation schemes has been developed to make the interpretation
of psychograms easier. They may range from rule-based sys-
tems derived from observations of characteristic shapes of psy-
chograms, Fisher discrimination functions, or systems using a
small number of coefficients, such as the 3 Goldberg coeffi-
cients. Unfortunately there is no comparison of these different
schemes and their relative merits have not been tested statisti-
cally. Our goal was to provide an automatic psychological diag-
nosis.

Rule based system is most desirable because a detailed in-
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terpretation, including description of personality type, may be
assigned to each diagnosis. We have worked with two datasets,
one for woman, with 1027 cases belonging to 27 classes (nor-
mal, neurotic, drug addicts, schizophrenic, psychopaths, organic
problems, malingerersetc.) determined by expert psychologists,
and the second for man, with 1167 cases and 28 classes. Rules
were generated using C4.5 classification tree [83] and the FSM
system. For the first dataset C4.5 created 55 rules, achieving
93.0% of correct responses. Assuming about 1% inaccuracy of
measurements improves results to 93.7%. FSM (with rectangu-
lar membership functions) generated 69 rules agreeing in 95.4%
with diagnosis by human experts. Gaussian fuzzification at the
level of 1.1-1.5% increases accuracy to 97.6%. For the second
dataset C4.5 created 61 rules giving 92.5% accuracy (93.1% af-
ter fuzzification), while FSM generated 98 rules giving 95.9%
accuracy and after fuzzification 96.9%. Some rules cover only
few cases from the database, therefore further pruning and re-
optimization is desirable.

Rules involve between 2 to 9 attributes. For most classes
therewere only afew errorsand it is quite probablethat they are
due to the psychol ogistsinterpreting the psychogram data. Two
classes, organic problems and schizophrenia, are difficult since
their symptoms are easily confused with symptoms belonging
to other classes. Each rule has detailed interpretation associ-
ated with it by psychologists. Fuzzification leads to additional
adjectives in verbal interpretation, like “strong tendencies’, or
“typical”. An expert system using these rules should be evalu-
ated by clinical psychologist in the near future. A typical rule
has the form:

If f7 € [55,68] A f12 € [81,93] A f14 € [49,56] Then Paranoia

where f7 isthe hysteriascale etc. An example of a psychogram
with rule conditions shown as vertical barsis shownin Fig. 10.
The rule has 5 conditions and the actual case is accepted by
that rule with 71.8% probability, calculated with assumption of
Gaussian uncertainties shown on the vertical bars for each con-
ditions. The rule condition for the Ps (psychostenia) scale fits
with only 72.2% to the measured value, which means that the
valueis close to the interval boundary. An expert system based
onour logical rulesisunder evaluation by clinical psychologists.

Hy Pr Mk Ps Pt Sc Ma i

Fig. 10. Psychogram with rule conditions and fuzzified input displayed.
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XI. SUMMARY AND CONCLUSIONS

Methodology of extraction of crisp and fuzzy logical rules
from data and black box classifiers (such as neural networks)
has been described. This methodology includes:

1) determination and optimization of linguistic variables;

2) initial generation of rules of different complexity using con-
strained ML P networks, search-based MLPs, FSM networks or
separability criterion;
3) optimization of
tion/accuracy tradeoff;
4) calculation of probabilities, enabling also estimation of reli-
ability of classification, gradient optimization of large sets of
rules, creating more robust logical rules and providing addi-
tional adaptive parameters.

Extraction of crisp logical rules is advantageous indepen-
dently of thefinal classifier used. First, in our tests logical rules
proved to be highly accurate; second, they are easily understand-
able by expertsin a given domain; third, they may expose prob-
lemswiththedataitself. Thisbecameevidentintheanalysisof a
real-world medical datasets we wereinvolvedin. Someresearch
groups reported very good results using this data, but after ex-
traction of logical rules it became clear that missing featuresin
the datawere replaced by their averagesfor agiven class. Cross-
validation tests on such data are quite accurate but in areal ap-
plication averages for a given class can be added only after, not
before the diagnosis.

From geometrical point of view crisp logic rules correspond
to a division of the feature space with hyperplanes perpendic-
ular to the axes, into areas with symbolic names (correspond-
ing to class and rule numbers). If the classes in the input space
are correctly separated with such hyperplanes accurate logical
description of the data is possible and worthwhile. Otherwise
accuracy of logical description of the data may increase slowly
with the number of linguistic variablesand generalization ability
of arule-based system (measured by crossvalidation tests) may
even decrease. If the number of logical rulesis too high or the
accuracy of classification is too low, other classification meth-
ods should be attempted. Fuzzy logic may offer better approx-
imation with smaller number of rules, including simple piece-
wise linear approximation rules and more complex membership
functions. However, fuzzy rules based on triangular or Gaus-
sian membership functions provide ova decision borders that
do not approximate correctly sharp decision boundaries neces-
sary for description of datawith inherent logical structure. Com-
plex membership functionsare provided by neurofuzzy systems,
such as the FSM network [42]. As long as separable transfer
functions are used network nodes are equivalent to fuzzy rules.
Although fuzzy rules are symbolic their comprehensibility is
lower than crisp rules. Finding a global optimum of the error
function for sophisticated classification systemsis usually more
difficult than for sets of crisp rules. Therefore a good strategy
is to start with extraction of crisp rules first and use fuzzy rules
only if the results are not satisfactory.

The problem of determination of linguistic variables is not
separable from the rule extraction itself. An iterative algorithm

rules and exploration of the reec-
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has been proposed, improving in turns linguistic variables and
then rules based on these variables. We have stressed the im-
portance of context-dependent linguistic variables since an un-
warranted assumption that the whole range of attribute values
should be partitioned into intervals corresponding to linguistic
variables is frequently used. Histograms are helpful to deter-
mine initia linguistic variables only in simple cases. Good lin-
guistic variables are found using probability density networks,
specia neural linguistic units or separability criterion.

Four groups of methods for extraction of logical rules have
been introduced in this paper. MLP2LN method of convert-
ing the MLP into a network performing logical operations has
been quite successful. The constructive C-MLP2LN version,
with L-R structure of the ML P network, composed of linguistic
units and rule units (with possible addition of aggregation units)
is quite fast. A search-based MLP agorithm as an aternative
to backpropagation training is particularly easy to implement
and analyze, giving a single logical rule per neuron. MLP2LN
methods in complex cases require an additional rule extraction
step, with search for combination of inputs that lead to activa-
tions exceeding the thresholds. Feature Space Mapping (FSM)
probability density networks are used for fuzzy rule extraction,
creating also crisp rules if atransition to rectangular member-
ship functionis made. SSV separability criterion combined with
the beam search techniques finds optimal separation values for
interacting features, creating decision trees that are easily con-
verted to sets of logical rules. The last two methods alow to
extract rules by inspection of network or tree nodes.

After extraction of rules modified predictive power cost func-
tion for additional optimization of linguistic variables is used,
creating hierarchical sets of logical rules with different reliabil-
ity - rejection rate. A great advantage of fuzzy logic is the soft
evaluation of probabilities of different classes, instead of binary
yes or no crisp logic answers. Gaussian fuzzification of the in-
put values may give the same probabilities as the Monte Carlo
procedure performed for input vectors distributed around mea-
sured values. Thus simple interpretation of crisp logical rules
is preserved, accuracy is improved by using additional param-
eters for estimation of measurement uncertainties, and gradient
procedures instead of costly global minimization may be used.
Gaussian uncertainties are equivalent to “soft trapezoid” fuzzi-
fication of the rectangular crisp membership functions. Sets of
crisp logical rules may then be used to calculate probabilities.
Novel vectors that would either be rejected or assigned to the
default class are assigned to the most probable class. Applica
tion to psychometric data analysis combines comprehensibility
of data description, allowing for verbal interpretation, with high
accuracy and soft probabilities of different diagnoses.

Using this methodol ogy we have analyzed many medical and
technical datasets obtaining simple and accurate logical rules.
For several benchmark problems simplest logical description
known so far was obtained. For some problems, such as the
hypothyroid or NASA Shuttle, logical rules are more accurate
than any other classification method [6], including neural net-
works. Possible explanations of this empirical observation are:
1) The inability of soft transfer functions (sigmoida or Gaus-
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sian) to represent sharp, rectangular edges that may be neces-
sary to separate two classes defined by acrisp logical rule.

2) The problem of finding globally optimal solution of the non-
linear optimization problem for neural classifiers — in some
cases we have used a global optimization method to improve
our rules, in other optimization of linguistic variables and opti-
mization of rules has been separated, leading to better solutions
than gradient-based neural classifiers were ableto find.

3) The problem of finding an optimal balance between the flex-
ibility of adaptive models and the danger of overfitting the data.
Bayesian regularization based on priorsleading to weight decay
[58] helps in case of some neural and statistical classification
models, but it has an adverse effect if sharp decision borders
are needed. Sharp decision borders require large weights and
thresholds while regularization terms decrease all weights. Log-
ical rules give much better control over the complexity of the
data representation and elimination of outliers - rulesthat cover
only afew new data vectors are easily identified and removed.
4) For medical data labeling the cases “sick” or “heathy” in-
troduces implicitly crisp logical rules. Forced to make yes-no
diagnosis human experts may fit the results of tests to specific
intervals.

Although we are pleased with the results obtained so far sev-
eral challenges still remain: aggregation of large number of in-
put features (some data mining problemswe work on have more
than 1000 features and less than 1000 cases), construction of
hierarchical systems when a large number of features contain
missing data, automati zation of thewhole processof logical data
description and creation of expert systems, going beyond prepo-
sitional logic and simple linguistic variables. We are sure that
neural networkswill play an important role in thisfield.

Please note that many papers of our group are available at:
http://www.phys.uni.torun.pl/kmk/publications.html
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