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Abstract.
The choice of transfer functions may strongly influence complexity and performance of neural networks used in classification

and approximation tasks. A taxonomy of activation and output functions is proposed, allowing to generate many transfer functions.
Several less-known types of transfer functions and new combinations of activation/output functions are described. Functions
parameterize to change from localized to delocalized type, functions with activation based on non-Euclidean distance measures,
bicentral functions formed from pairs of sigmoids are discussed.

1 INTRODUCTION.

From the probabilistic point of view [1] adaptive systems should approximate the density of joint probability p(X ,Y )
or the posterior probability p(Y |X) of input-output values. Modification of adjustable internal parameters W allows
neural networks to learn an arbitrary vector mapping from the space of inputs X to the space of outputs Y = F W (X). The
current focus in neural network research is on learning algorithms and architectures of networks based on sigmoidal
or radial basis functions. In approximation theory many basis functions are used (cf. [2]). Neural networks with
sigmoidal or Gaussian functions are universal approximators [3] but are they optimal from the point of view of
complexity and difficulty of their training? For some datasets a large (and hard to train) network using sigmoidal
functions may be needed for tasks that could be solved with a small (and easy to train) network using other transfer
functions.

Consider [4] a classification problem in N dimensions, with vectors belonging to the class C 1 inside the unit sphere
and C2 outside of this sphere. A single multivariate Gaussian function with 2N adaptive parameters (specifying the
center and dispersions in each dimension) will solve this task after a short training. To capture any bound region
in N-dimensional space a multilayer perceptron (MLP) needs N hyperplanes forming a simplex and one additional
neuron to smooth the combined output of these neurons. At least N 2 + N parameters are needed in this case, making
the training process much more difficult. Consider now the C1 data vectors contained in the corner of the coordinate
system bound by the (1,1, ...,1) plane and C2 vectors outside. A single hyperplane with N +1 parameters is sufficient
for perfect classification. One Gaussian function placed in the center of the region and N +1 Gaussians in the corners,
using at least 2N(N + 2) adaptive parameters, still provide a poor approximation here. Improved learning algorithms
or network architectures will not change the relative complexity of solutions as long as the decision borders provided
by the transfer functions remain spherical (as in the first example) or planar (as in the second example). Thus we
conclude that the type of transfer functions used is an important (although badly neglected) issue. In this paper a
taxonomy of transfer functions is presented and several new types of transfer functions proposed.

2 TAXONOMY OF TRANSFER FUNCTIONS

The activation function determines the total signal a neuron receives. The inner product (IP) function (fan-in function)
is most common, I(x) = ∑Wixi, with W0 = θ (threshold) and x0 = 1. The output function o(I) takes the scalar activation
as input and returns scalar output values. Typically a squashing function is used to keep the output values within
specified bounds. The composition of the activation and the output function is called the transfer function o(I(x)). It
is defined in the N-dimensional input space, called also the parameter space. The transfer function is local if its values
are significantly different from zero (i.e. |o(I(x))| > ε for some small ε) in a finite area of the input space; otherwise
the function is non-local.

Statistical methods of classification may be divided into two broad groups: methods based on discrimination, using
hyperplanes or other hypersurfaces for tessellation of the input space, and methods based on clusterization, in which



similarities are calculated using some kind of a distance measure. Therefore there are three main choices for the
activation functions (Fig. 1):

• The inner product I(x;w) ∝ wT ·x (as in the MLP networks).

• The distance-based activation D(x; t) ∝ ||x− t||, used to calculate similarity of x to a prototype vector t.

• A combination of the two activations, A(x;w, t) ∝ α wT ·x+β ||x− t||,

In each case either the final scalar value of activation or the vector components of this activation are used. The
distance-based form of activation is usually taken in the scalar form D(x, t), but some output functions may use the
vector components Di ∝ (xi − ti)2. The D(x, t) distance function does not have to be Euclidean. The Minkovsky’s
distance function is: DMb(x,y;b)α = ∑N

i d(xi,yi)α/bi, where bi are scaling factors and the d(·) function is used to
estimate similarity at the feature level and in the simplest case d(xi,yi) = |xi−yi|. Mahalanobis distance, more general
quadratic distance function and many correlation factors are also suitable for metric functions, for example Camberra,
Chebychev, Kendall’s Rank Correlation or Chi-square distance [5]. All these function may replace the Euclidean
distance used in the definition of many transfer functions. For symbolic features the Modified Value Difference Metric
(MVDM) is useful [6]. A value difference for feature j of two N-dimensional vectors x,y with discrete (symbolic)
elements, in a C class problem, is:

dq
V (x j,y j) =

C

∑
i

∣
∣p(Ci|x j)− p(Ci|y j)

∣
∣q

(1)

where p(Ci|x j) is estimated by calculating the number Ni(x j) of times the value x j of the feature j occurred in vectors
belonging to class Ci, and dividing it by the number N(x j) of times x j occurred for any class. d q

V (x j,y j) is used as
d(·) in the Minkovsky distance function for symbolic attributes, combined with other distance functions for numerical
attributes. Many variants of MVDM have been discussed in the literature and may be used in neural network activation
functions [5, 6]. To avoid problems with calculation of gradients instead of using VDM-type metrics directly one
may use numerical input vectors obtained by replacing symbolic and discrete attributes with p(C i|x j) probabilities.
Resulting numerical vectors have the number of components equal to the number of different symbolic values times
the number of classes.

The square of the inner product activation function is a quadratic form. Treating all coefficients of this form as
independent and transforming it into a canonical form:

I2(x;w) ∼ D2(x; t,a) =
N

∑
i

ai(x′i − ti)2 (2)

where the new variables x′i are linear combinations of the original variables x i. If all parameters ai are positive,
ai = 1/b2

i , then an Euclidean distance function is obtained, providing hyperellipsoidal contours of constant values.
Squared fan-in activation function is used in the Lorentzian transfer functions, providing a window-type non-localized
surfaces of constant density [5].

Identity function is used as the output function in linear networks. The radial coordinate transfer function ||x− t||
has a distance-based activation and identity output function. Most activation functions are unbounded and output
functions are used as squashing functions. There are three major choices (Fig. 2):

• Sigmoidal non-local functions.

• Functions localized around a single center.

• Semi-centralized functions that have several centers.

Systematic combination of activation and output functions leads to many useful transfer functions, some of which
have already been introduced in the literature (cf. review [5]). Linear transfer functions, combination of the scalar
inner product (IP) activation with identity output function, are frequently used for input and output layers. Combining
IP with the step function or multi-step function, transfer functions of logical neurons are obtained. They provide
decision borders in the form of hyperplanes rotated by the Wi j coefficients, dividing the input space into polyhedral
areas.



Activation type

Inner product (IP)
I ∝ wT x

Scalar
I ∝ wT x

I = wT x

Vector
Ii ∝ wixi

Distance-Based (DB)
D ∝ ||x− t||
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C(|| · ||) = O(n) C(|| · ||) = O(n2)

Mahalanobis, Quadratic

Vector
Di ∝ ||xi − ti||

Di = (xi − ti)2/b2
i

Mix of IP & DB
A ∝ wT x+ ||x− t||

Scalar
A ∝ wT x+ ||x− t||

AR = w0 +wT x+wn+1wT w,
AC = wT (x− t)+ω(x− t)T (x− t),

AGL1 = wT x+α||x− t||,
AGL2 = α(wT x)2 +β||x− t||2

Vector
Ai ∝ wixi + ||xi − ti||

Bi-activ Ai = {A+
i ,A−

i }:

Bi A1±i = si(xi − ti ±bi),
Bi2s A2±i = s±i (xi − ti ±bi),
BiR A3±i = si(xi + rixi+1 − ti ±bi),
BiR2s A4±i = s±i (xi + rixi+1 − ti ±bi)

Figure 1: Taxonomy of activation functions. C(|| · ||) is the number of adaptive parameters of || · || norm.
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Figure 2: Taxonomy of output functions.



The graded response neurons used most often in the literature are based on the soft sigmoidal output functions,
for example logistic functions σ(I/s) = 1/

(
1+ e−I/s

)
, combined with scalar IP activation. These transfer functions

are non-local. Sigmoidal output functions allow to construct wide-margin classifiers, smoothing out many shallow
local minima in the total output function of the network. The usefulness of sigmoidal transfer functions seems to
be related to the usefulness of Gaussian functions in statistics. Sigmoidal transfer function appear in expressions on
probability p(x > a) of measurements x which have Gaussian-type uncertainties [7]. Since observations are not quite
accurate, instead of a number y a Gaussian distribution Gy = G(y; ȳ,sy) centered around ȳ with dispersion sy should be
given. This distribution may be treated as a membership function of a fuzzy number G y. The cumulative distribution
p(x− ȳ) =

R x
−∞ G(y; ȳ,sy)dy may be approximated by σ((x− ȳ)/T ), where T =

√
2sy/2.4, with accuracy better than

0.02 for all x. The p(x− ȳ) distribution may be interpreted as the probability of a certain decision rule R x(z) =True iff
z ≤ x is true, i.e. p(Rx|Gy) = p(x− ȳ). The Gaussian assumption for the uncertainty of inputs is equivalent to the soft
trapeziodal membership functions of the logical rules used with the sharply defined inputs. On the other hand starting
with sigmoidal functions instead of the erf function is equivalent to the assumption that the uncertainties are given by
σ((x− ȳ)/T )(1−σ((x− ȳ)/T )), approximating the Gaussian function within a few percent.

Logistic functions may be replaced by the error (erf) function, arcus tangent or the hyperbolic tangent functions.
Since calculation of exponents is much slower than simple arithmetic operations, other functions of sigmoidal shape
may be useful to speed up computations, for example s 1(I;s) = I(sgn(I)I − s)/(I2 − s2) with derivative s′1(I;s) =
s/(I + sgn(I)s)2 (other approximations are presented in [5]).

The scalar distance-based activation (DB) may be used with the step or multistep functions, defining hard sphere
type of transfer functions. Such spheres with fixed radius are used in the Restricted Coulomb Energy classifiers [8]. In
the k-nearest neighbor (k-NN) method spheres with variable radius, covering exactly k vectors, are used. Combining
sigmoidal output functions with scalar DB activation leads to “soft” versions of these methods. Logistic function
G1(D) = 1−σ(D2) = 1/(1+ exp(D2)), hyperbolic tangent G2(D) = 1− tanh(D2) function and their approximations
have ellipsoidal contours with Gaussian-like shapes and may be used in RBF networks. For N-dimensional input space
each ellipsoidal unit uses 2N adaptive parameters. Using the Mahalanobis distance function D M(x; t) with (symmetric)
covariance matrix Σ rotation of hyperellipsoids is introduced, but the number of adaptive parameters per each function
becomes large. Simpler units giving approximately ellipsoidal densities are also useful (cf. [5]).

Radial functions were used in approximation theory [2] and in pattern recognition under different names (cf.
Gaussian classifiers and potential function approach, [10]) since a long time. RBFs take the scalar DB activation
D = ||x − t|| and one of the radial basis output functions or their approximations. Except for o(I) = I (identity
function) multiquadratic functions sm(r;b) =

√
b2 + r2, nonlocal general multiquadratics, thin-plate spline functions

and other non-local radial output functions are used [9]. Among localized radial basis functions Gaussian functions are
unique since for all distance functions that may be presented as a sum of independent components they are separable,
G(r,b) = exp(−D2/b2). Inverse quadratic function G3(D) = 1/(1+D2) or quartic function have similar shape but are
not separable. In the N-dimensional case a center is described by N coordinates t i. Together with the scaling factors
bi (dispersions for Gaussians) 2N adaptive parameters for each neural unit are provided.

Vector form of DB activation in combination with one-dimensional Gaussian output functions is called Gaussian
bar functions [11] Ḡ(x; t,b,v) = ∑N

i=1 vi exp(−(xi − ti)2/b2
i ) and has been introduced to enable feature selection.

3N adjustable parameters are needed per processing unit. Except for a single maximum around center t in N-
dimensions these functions involve Gaussians in N − 1 dimensional subspaces. For some data a smaller number
of bar functions than multidimensional Gaussians is sufficient to reach similar accuracy. Combination of vector DB
activation with sigmoidal functions creates sigmoidal bar functions that have not been used so far: σ̄(x; t,b,v) =
∑N

i=1 vi/(1+ exp(−(xi − ti)2/b2
i )) = ∑N

i=1 viσ((xi − ti)2/b2
i ).

Mixing the inner product and distance-based activation leads to the most interesting universal transfer functions
that may become local or nonlocal, depending on the values of their adaptive parameters. Linear terms used to calculate
I(x;w,θ) activation and quadratic terms used in Euclidean distance measures combined together create functions that
for some parameters are localized, and for other parameters non-localized. Ridella et al. [12] use circular units in their
Circular Backpropagation Networks. The output function is a standard sigmoid while the activation function contains
one quadratic term wN+1 ∑N

i=1 x2
i and may also be presented in the form of a distance function with:

AR(x;w) = dc(x;c) = (||x− c||2 −θ)wN+1 (3)



where ci = −wi/2wN+1 and θ =
(
∑N

i=1 w2
i /4w2

N+1 −w0
)
/wN+1. These units perform very well in the standard

backpropagation network, providing an optimal solution in classification problems [12].
Dorffner [13] proposed conic section transfer functions as a unified framework for the MLP and RBF networks.

Straight lines and ellipses are special cases of conic sections. From geometrical considerations Dorffner proposes a
combination of IP and DB activation functions AC(x;w, t,WD) = I(x− t;w) +WDD(x− t). This activation is then
composed with the standard sigmoidal function to produce the conical transfer function.

Many other combinations of fan-in and distance functions could also serve as universal transfer functions. For
example, exp(αI2 − βD2) or the approximated Gaussian combined with the Lorentzian function also provide an
interesting universal transfer function, CGL1(x;w, t,α,θ) = 1/

(
1+(I(x;w)+αD(x; t))2

)
, or AGL2 activation (Fig. 1).

The α parameter scales the relative importance of the linear, non-localized terms. The number of adaptive parameters
in this case is equal to 2N + 1 (no scaling factors in distance function) or 3N + 1 (separate distance scaling factors for
each dimensions). Unfortunately these functions are not separable.

Sigmoidal functions may be combined into a window type localized functions in several ways. Two simple
window-type functions are constructed as the difference of two sigmoids, σ(x)− σ(x− θ) or the product of pairs
of sigmoidal functions σ(x)(1−σ(x)) for each dimension. One may prove that after normalization these two forms
are identical [5]. This type of transfer functions are very flexible, producing decision regions with convex shapes,
suitable for classification. Product of N pairs of sigmoids has the following general form:

Bi(x; t,b,s) =
N

∏
i=1

σ(esi · (xi − ti + ebi)) (1−σ(esi · (xi − ti − ebi))) (4)

Shape adaptation of the Bi(x; t,b,s) contours is possible by shifting centers t, rescaling b and s. Radial basis functions
are defined relatively to only one center ||x − t||. Here components of two centers are used, t i ± ebi , therefore
these functions are called bicentral. Product form leads to well-localized convex contours of bicentral functions.
Exponentials esi and ebi are used instead of si and bi parameters to prevent oscillations during the learning procedure.
The number of adjustable parameters per processing unit is in this case 3N. Localized bicentral functions may be
extended to the semi-localized universal transfer functions by adding two parameters:

SBi(x; t,b,s) =
N

∏
i=1

(α +σ(esi · (xi − ti + ebi))) (1−βσ(esi · (xi − ti − ebi))) (5)

This function does not vanish for large |x|, for α = 0, β = 1 it is identical to the bicentral localized functions while
for α = β = 0 each component under the product turns into the usual sigmoidal function. For each unit semi-local
functions SBi have 3N + 2 parameters or 5N parameters (if different α i and βi are used in each dimension). Another
possibility to control bicentral function’s contours is to use independent slopes s,s ′ in both factors. For small slopes
si and/or s′i the bicentral function may delocalize or stretch to left and/or right in any dimension. This allows creation
of such contours as half-infinite channel, half-hyper ellipsoidal, soft triangular, etc. Although the costs of using this
function is a bit higher than of the bicentral function (each function requires 4N parameters) more flexible decision
borders are produced. Approximations to sigmoids may be used to avoid calculations of exponents.

Individual rotation of contours provided by each unit is possible in all dimensions with just N additional parameters
per neuron [5]. Bicentral functions with rotations (as well as multivariate Gaussian functions with rotation) have
been implemented so far only in two neural network models, the Feature Space Mapping [14] and the IncNet [15].
Separability of the bicentral functions enables analysis of each dimension or a subspace of the input data independently.
This is very important in classification when some of the features are missing. Bicentral transfer functions may also be
used for logical rule extraction using the Feature Space Mapping network (FSM network, a model similar to RBF but
based on separable functions) [16]. Sufficiently large values of the slopes are needed to change the bicentral functions
into rectangular functions. Early results obtained with these functions are presented in [17].

3 CONCLUSIONS

Most neural networks are based on either sigmoidal or Gaussian transfer functions. In the functional link networks of
Pao [18] a combination of various functions, such as polynomial, periodic, sigmoidal and Gaussian functions are used.
We have presented a taxonomy of different transfer functions used in neural network models and proposed several
new combinations of activation and output functions suitable for this purpose. Functions presented in this paper are
more suitable as neural transfer functions – although we have not proved this most of these functions should lead to a



similar convergence behavior as given by the sigmoidal or Gaussian functions, i.e. in mutidimensional spaces much
more attractive than given by polynomials.

According to the Statlog report [19] comparing many classification methods on 22 real-world datasets results
of RBF and MLP are different. In some cases crossvalidation errors were twice as large using MLP than RBF
while for other data the situation was reversed. Although one may always argue that better initialization, learning
and architectures will reduce the difference, at least part of that difference may be attributed to different shapes of
decision borders (hyperplane vs. ellipsoidal) provided by their transfer functions. Unfortunately little is known about
advantages and disadvantages of different transfer functions presented in this paper. Many of them have never been
used in neural networks so far (due to the lack of space only selected transfer functions were presented here) and almost
none are available in public domain neural software. There is a tradeoff between flexibility of a single processing unit,
increasing with the number of adjustable parameters, and the number of units needed to solve the problem, decreasing
with flexibility of individual units. The complexity of the training process of the whole network should be minimized,
but what is the optimal balance between the number and the complexity of units is not known. We believe that neural
transfer functions deserve more attention.
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