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}
if (err < EPS) break;
odd=!o0dd;
}
if (k > MAXIT) nrerror("maxits exceeded in cisi");
}
*si=sums;

*ci=sumc+log(t)+EULER;
}
if (x < 0.0) *si = -(*si);

CITED REFERENCES AND FURTHER READING:

Stegun, L.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,
vol. 80B, pp. 291-311; 1981, op. cit., vol. 86, pp. 661-686.

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, vol. 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover
Publications, New York), Chapters 5 and 7.

6.10 Dawson’s Integral

Dawson’s Integral F'(x) is defined by
Fz)=e¢" /O e at (6.10.1)
The function can aso be related to the complex error function by
F(z) = ge_ﬁ 1 — erfc(—iz)]. (6.10.2)

A remarkable approximation for F'(x), due to Rybicki [1], is

1 —(z—nh)?
F(z)=lim—= > S (6.10.3)

What makes equation (6.10.3) unusual is that its accuracy increases exponentially
as h gets small, so that quite moderate values of h (and correspondingly quite rapid
convergence of the series) give very accurate approximations.

We will discuss the theory that leads to equation (6.10.3) later, in §13.11, as
an interesting application of Fourier methods. Here we simply implement a routine
based on the formula

It isfirst convenient to shift the summation index to center it approximately on
the maximum of the exponential term. Define ng to be the even integer nearest to
x/h, and xg = ngh, ' =z — 9, and n’ = n — ng, SO that

1 N e—(r/—n/h)2
Flo)m—= > ———— o (6.10.4)

i
n/=—N
n’/ odd
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260 Chapter 6.  Special Functions

where the approximate equality is accurate when h is sufficiently small and N is
sufficiently large. The computation of this formula can be greatly speeded up if
we note that

(@' _ —a? =0 h)? (ezr/h)" , (6.10.5)

The first factor is computed once, the second is an array of constants to be stored,
and the third can be computed recursively, so that only two exponentias need be
evaluated. Advantage is also taken of the symmetry of the coefficients e~ ("'m" py
breaking the summation up into positive and negative values of n’ separately.

In the following routine, the choices h = 0.4 and N = 11 are made. Because
of the symmetry of the summations and the restriction to odd values of n, the limits
onthedo loopsare 1to 6. The accuracy of theresult inthisfloat version is about
2 x 10~7. In order to maintain relative accuracy near = = 0, where F(z) vanishes,
the program branchesto the eva uation of the power series(2] for F'(x), for |x| < 0.2.

#include <math.h>
#include "nrutil.h"
#define NMAX 6
#define H 0.4
#define A1 (2.0/3.0)
#define A2 0.4
#define A3 (2.0/7.0)

float dawson(float x)
Returns Dawson's integral F(z) = exp(—x?) I exp(t?)dt for any real x.
{
int i,n0;
float d1,d2,el,e2,sum,x2,xp,xx,ans;
static float c[NMAX+1];
static int init = 0; Flag is O if we need to initialize, else 1.

if (init == 0) {
init=1;
for (i=1;i<=NMAX;i++) c[i]l=exp(-SQR((2.0*i-1.0)*H));

}
if (fabs(x) < 0.2) { Use series expansion.
X2=X*X;
ans=x*(1.0-A1*x2*(1.0-A2*x2*(1.0-A3%x2)));
} else { Use sampling theorem representation.
xx=fabs (x);
n0=2*(int) (0.5*xx/H+0.5);
xp=xx-n0*H;
el=exp(2.0*xp*H) ;
e2=elx*el;
d1=n0+1;
d2=d1-2.0;
sum=0.0;
for (i=1;i<=NMAX;i++,d1+=2.0,d2-=2.0,el*=e2)
sum += c[i]*(el1/d1+1.0/(d2*el));
ans=0.5641895835*SIGN (exp (-xp*xp) ,x) *sum; Constant is 1/+/7.
}

return ans;
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6.11 Elliptic Integrals and Jacobian Elliptic Functions 261

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:
Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85-87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171-178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811-816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Ellipticintegrals occur in many applications, because any integra of theform

/ R(t,s) dt (6.11.1)

where R is a rationa function of ¢ and s, and s is the square root of a cubic or
quartic polynomia in ¢, can be evaluated in terms of dliptic integrals. Standard
references [1] describe how to carry out the reduction, which was originaly done
by Legendre. Legendre showed that only three basic dliptic integrals are required.
The simplest of these is

I = / dt
y \/(CL1 + blt)(az + bzt)(ag + bgt)(a4 + b4t)

(6.11.2)

where we have written the quartic s? in factored form. In standard integral tables[2],
one of the limits of integration is dways a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evauate I;, we smply break the interval [y, z] into subintervas, each of which
either begins or ends on a singularity. The tables, therefore, need only distinguish
the eight cases in which each of thefour zeros (ordered according to size) appears as
the upper or lower limit of integration. In addition, when one of the b'sin (6.11.2)
tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity
moving to +oo; thisleads to eight more cases (actually just specia cases of thefirst
eight). The sixteen cases in total are then usualy tabulated in terms of Legendre's
standard elipticintegral of the 1st kind, which we will define below. By a change of
thevariable of integration ¢, the zeros of the quartic are mapped to standard locations
on the real axis. Then only two dimensionless parameters are needed to tabulate
Legendre’'s integral. However, the symmetry of the original integral (6.11.2) under
permutation of the roots is concealed in Legendre's notation. We will get back to
Legendre's notation below. But first, here is a better way:

Carlson [3] has given a new definition of a standard elliptic integral of the first kind,
)= 1 /°° dt
2Jo ViEt+a)t+y)(t+2)

Rr(z,y,z (6.11.3)
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